Số dư của phép chia đa thức
\(P\left(x\right)=x^{99}+x^{55}+x^{11}+x+7\) cho \(x^2-1\) là :
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi đa thức thương là H(x) và phần dư là ax+b.
Theo bài ra ta có:
x⁹⁹+x⁵⁵+x¹¹+x+7=(x²-1)×H(x)+ax+b (1)
Thay x=1;x=-1 lần lượt vào (1). Ta được:
11=a+b
3=-a+b => a=4; b=7
Dư là 4x+7
K mk nha
gọi Q(x) là thương của phép chia x99+x55+x11+x+7x99+x55+x11+x+7 chox2−1x2−1
vì bậc của đa thức thương là 2 nên gọi đa thức dư cần tìm là ax+b
ta có x99+x55+x11+x+7=(x2−1)Q(x)+ax+bx99+x55+x11+x+7=(x2−1)Q(x)+ax+b
=(x−1)(x+1)Q(x)+ax+b(x−1)(x+1)Q(x)+ax+b (*)
thay x=1 ở (*) cho ta được 11=a+b
thay x=-1 ở (*) cho ta được 3=-a+b
ta có a+b+(-a+b)=11+3=14
⇔2b=14⇔b=7⇒a=11−7=4⇔2b=14⇔b=7⇒a=11−7=4
Vậy dư của phép chia đa thức P(x)= x99+x55+x11+x+7x99+x55+x11+x+7 chox2−1x2−1 là 4x+7
(x^99+x^11)+(x^55+x)+7 =x^11(x^88+1)+x(x^54+1)+7 =x^11(x^22+1) (x^66-x^44+x^22-1) + x(x^54+1)+7 = A+7 mà ta có:
a^n+1=(a+1)(a^(n-1)-a^(n-2)+.....-1) (với n là lẻ) vậy a^n+1 chia hết cho a+1 với a lsf x^2,n lần lượt là 11 và 27=>A chia hết cho x^2+1 Xét 7(x^2+1) dư b nếu x=0 thì b=0 x=+ -1 thì b=1 x=+ -2 thì b=2 x>2 thì b=7 đó cũng là số dư của A+7 chia cho x^2+1. và là số dư cần tìm
gọi g(x) là thương phép chia
số dư có dạng ax+b
đặt x^99 + x^55 + x^11 + 7 = f(x)
ta có
f(x) = g(x) . (x^2 - 1) +ax+b
x = 1
=> f(1) = g(1) . (1^2 - 1) + a+b
11 = a+b
x=-1
=> f(-1) = g(-1) . (-1^2 - 1) -a+b
=> 3 = -a+b
ta có
a+b = 11
b-a = 3
=> 2a = 8
=> a=4
b=7
thương phép chia là 4a+7
Cho hoi dap de hoi chi khong duoc noi lung tung day la pham loi trong hoi dap
gọi Q(x) là thương của phép chia \(x^{99}+x^{55}+x^{11}+x+7\) cho\(x^2-1\)
vì bậc của đa thức thương là 2 nên gọi đa thức dư cần tìm là ax+b
ta có \(x^{99}+x^{55}+x^{11}+x+7=\left(x^2-1\right)Q_{\left(x\right)}+ax+b\)
=\(\left(x^{ }-1\right)\left(x+1\right)Q_{\left(x\right)}+ax+b\) (*)
thay x=1 ở (*) cho ta được 11=a+b
thay x=-1 ở (*) cho ta được 3=-a+b
ta có a+b+(-a+b)=11+3=14
\(\Leftrightarrow2b=14\\ \Leftrightarrow b=7\Rightarrow a=11-7=4\)
Vậy dư của phép chia đa thức P(x)= \(x^{99}+x^{55}+x^{11}+x+7\) cho\(x^2-1\) là 4x+7
4x+7