Tìm x \(\in\) Z biết;
a) \(\dfrac{x}{15}=\dfrac{4}{y}=\dfrac{-2}{5}\)
b) \(\dfrac{x-3}{4}=\dfrac{15}{20}\)
c) \(\dfrac{-5}{9}+\dfrac{-8}{15}+\dfrac{22}{-9}+\dfrac{-7}{15}< x\le\dfrac{-1}{3}+\dfrac{-1}{4}+\dfrac{-5}{12}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge0;x\ne25\)
\(A=\dfrac{\sqrt{x}+2}{\sqrt{x}-5}=\dfrac{\sqrt{x}-5+7}{\sqrt{x}-5}=1+\dfrac{7}{\sqrt{x}-5}\)
Để \(A\in\mathbb{Z}\) thì: \(\dfrac{7}{\sqrt{x}-5}\) nhận giá trị nguyên
\(\Rightarrow 7\vdots\sqrt{x}-5\)
\(\Rightarrow\sqrt{x}-5\inƯ\left(7\right)\)
\(\Rightarrow\sqrt{x}-5\in\left\{1;7;-1;-7\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{6;12;4;-2\right\}\) mà \(\sqrt{x}\ge0\)
\(\Rightarrow\sqrt{x}\in\left\{4;6;12\right\}\)
\(\Rightarrow x\in\left\{16;36;144\right\}\left(tm\right)\)
Vậy \(A\in \mathbb{Z}\) khi \(x\in\left\{16;36;144\right\}\)
số cặp x,y là :
N :2 = ??
đ/s:.......
số cặp x,y,z là :
N* :3=?
Sửa đề: Tìm x, y thuộc Z biết x2 + 2x + y = xy
Bài làm:
\(x^2+2x+y=xy\)
\(x^2+2x=xy-y\)
\(x\left(x+2\right)=y\left(x-1\right)\)
\(\dfrac{x}{y}=\dfrac{x-1}{x+2}\)
Đặt xk = x - 1; yk = x + 2; k ≠ 0. Nếu k = 1 thì x = x - 1 hay 0 = -1, vô lí.
Suy ra
xk - x = -1
x(k - 1) = -1
\(x=-\dfrac{1}{k-1}\)
\(yk=2-\dfrac{1}{k-1}\)
\(y=\dfrac{2-\dfrac{1}{k-1}}{k}\)
(từ đoạn này thì phải tìm k để x và y nguyên nhưng chưa xử lí được)
Ta có: \(x\left(5-x\right)\ge0\)
+) TH1: \(\left\{{}\begin{matrix}x>0\\5-x>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>0\\x< 5\end{matrix}\right.\Rightarrow0< x< 5\)
Mà \(x\in\mathbb{Z}\) nên: \(x\in\left\{1;2;3;4\right\}\) (nhận)
+) TH2: \(\left[{}\begin{matrix}x=0\\5-x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\left(nhận\right)\)
+) TH3: \(\left\{{}\begin{matrix}x< 0\\5-x< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< 0\\x>5\end{matrix}\right.\left(vô.lí\right)\)
=> loại
Vậy: ...
+) x -9 = -9
=> x = 0
+) z + x = 11
<=> z + 0 = 11
<=> x = 11
+) y - z = -10
<=> y - 11 = -10
<=> y = 1
2, có 2 th
th1: x+5>0 và 3x-12>0
th2: x+5<0 và 3x-12<0
bn tự giải tiếp nha phần sau dễ
mk biết làm bài 2 rồi nhưng bài 3 mk chưa biết làm, bạn chỉ cầ làm kĩ bài 3 cho mk thôi
\(\left(x+y\right)\left(y+z\right)=xy+xz+y^2+yz=y\left(x+y+z\right)+xz\)
\(=y.\frac{1}{xyz}+xz=\frac{1}{xz}+xz\ge2\)
b, \(\dfrac{x-3}{4}=\dfrac{15}{20}\)
<=> \(\dfrac{x-3}{4}=\dfrac{3}{4}\)
=> x-3=3
<=> x=6
Vậy x=6
\(a,\dfrac{x}{15}=\dfrac{4}{y}=\dfrac{-2}{5}\)
* \(\dfrac{x}{15}=\dfrac{-2}{5}\)
\(\Rightarrow\dfrac{x}{15}=\dfrac{-6}{15}\)
\(\Rightarrow x=-6\)
*\(\dfrac{4}{y}=\dfrac{-2}{5}\)
\(\Rightarrow\dfrac{4}{y}=\dfrac{4}{-10}\)
\(\Rightarrow y=-10\)
Vậy x = - 6 ; y = - 10
\(b,\dfrac{x-3}{4}=\dfrac{15}{20}\)
=> ( x - 3 ) . 20 = 4. 15
=> 20x - 60 = 60
=> 20x = 60 + 60
=> 20x = 120
=> x = 120 : 20
=> x = 6
Vậy x = 6
\(c,\dfrac{-5}{9}+\dfrac{-8}{15}+\dfrac{22}{-9}+\dfrac{-7}{15}< x\le\dfrac{-1}{3}+\dfrac{-1}{4}+\dfrac{-5}{12}\)
\(\Rightarrow\dfrac{-5}{9}+\dfrac{-8}{15}+\dfrac{-22}{9}+\dfrac{-7}{15}< x\le\dfrac{-4}{12}+\dfrac{-3}{12}+\dfrac{-5}{12}\)
\(\Rightarrow\left(\dfrac{-5}{9}+\dfrac{-22}{9}\right)+\left(\dfrac{-8}{15}+\dfrac{-7}{15}\right)< x\le-1\)
\(\Rightarrow-3+\left(-1\right)< x\le-1\)
\(\Rightarrow-4< x\le-1\)
\(\Rightarrow x=-3;-2;-1\)