\(8^x:2^x=16^{2011}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
\(8^x-2^x=16^{2011}\)
\(\Leftrightarrow\left(2^3\right)^x-2^x=\left(2^4\right)^{2011}\)
\(\Leftrightarrow2^{3x}-2^x=2^{8044}\)
\(\Leftrightarrow2^{2x}=8044\)
\(\Leftrightarrow2x=8044\)
\(\Leftrightarrow x=4022\)
\(\left(x-2011\right)\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\right)=\frac{16}{9}\)
\(\left(x-2011\right)\cdot\frac{2}{9}=\frac{16}{9}\)
\(x-2011=8\)
\(x=2019\)
\(\frac{x-2011}{12}+\frac{x-2011}{20}+\frac{x-2011}{30}+\frac{x-2011}{42}+\frac{x-2011}{56}+\frac{x-2011}{72}=\frac{16}{9}\)
\(\left(x-2011\right)\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\right)=\frac{16}{9}\)
\(\left(x-2011\right)\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\right)=\frac{16}{9}\)
\(\left(x-2011\right)\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{8}-\frac{1}{9}\right)=\frac{16}{9}\)
\(\left(x-2011\right)\left(\frac{1}{3}-\frac{1}{9}\right)=\frac{16}{9}\)
\(\left(x-2011\right)\frac{2}{9}=\frac{16}{9}\)
\(x-2011=8\Rightarrow x=2019\)
\(\left(2^3\right)^n\)\(:2^n\)\(=\left(2^4\right)^{2021}\)
\(2^{3n}\)\(:2^n\)\(=2^{4x2021}\)\(=2^{8084}\)
\(2^{3n-n}\)\(=2^{8084}\)
\(=>3n-n=8084\)
\(2n=8084\)
\(n=8084:2=4042\)
\(=>n=4042\)
A=\(\left|x^2+y^2+5+2x-4y\right|-\left|-\left(x+y-1\right)^2+2xy\right|\)
\(\Leftrightarrow A=x^2+y^2+5+2x-4y-\left|-\left(x^2+2xy-2x-2y+y^2+1\right)\right|+2xy\)
\(\Leftrightarrow A=x^2+y^2+5+2x-4y+x^2-2xy+2x+2y-y^2-1+2xy\)
\(\Leftrightarrow A=2x^2-4+4x-2y\)
thay \(x=2^{2011};y=16^{503}\) vào A ta được:
\(2.\left(2^{2011}\right)^2-4+4.\left(2^{2011}\right)-2.\left(16^{503}\right)\)
A không có giá trị
a. 1⋅2⋅3+2⋅4⋅6+3⋅6⋅9+4⋅8⋅12
= 6+2⋅4⋅6+3⋅6⋅9+4⋅8⋅12
= 6+48+3⋅6⋅9+4⋅8⋅12
= 6+48+162+4⋅8⋅12
= 6+48+162+384
= 600
b . Ta có \(A=\frac{2010+2011}{2011+2012}=\frac{2010}{2011+2012}+\frac{2011}{2011+2012}.\)
Ta có : \(\frac{2010}{2011+2012}< \frac{2010}{2011}\) và \(\frac{2011}{2011+2012}< \frac{2011}{2012}\)
=> \(\frac{2010+2011}{2011+2012}< \frac{2010}{2011}+\frac{2011}{2012}\)
=> A < B
a) ĐKXĐ: \(x\notin\left\{0;2\right\}\)
Ta có: \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)
\(\Leftrightarrow\dfrac{x\left(x+2\right)}{x\left(x-2\right)}-\dfrac{x-2}{x\left(x-2\right)}=\dfrac{2}{x\left(x-2\right)}\)
Suy ra: \(x^2+2x-x+2-2=0\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=-1\left(nhận\right)\end{matrix}\right.\)
Vậy: S={-1}
\(8^x:2^x=16^{2011}\)
\(\Leftrightarrow\left(2^3\right)^x:2^x=\left(2^4\right)^{2011}\)
\(\Leftrightarrow2^{3x}:2^x=2^{8044}\)
\(\Leftrightarrow2^{2x}=2^{8044}\)
\(\Rightarrow2x=8044\)
\(\Rightarrow x=4022\)
8x : 2x = 162011
(23)x : 2x = (24)2011
23x : 2x = 28044
=> 3x-x=8044
=> 2x=8044
=> x=8044:2
=> x=4022