1) Chứng minh rằng tổng n số tự nhiên liên tiếp chia hết cho n nếu n là số lẻ ?
2) Chứng minh tổng n số tự nhiên liên tiếp không chia hết cho n nếu n là số chẵn ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 3
http://data.nslide.com/uploads/resources/620/3533369/preview.swf
các bạn có thể cho mình biết được không,đang cần gấp lắm.
Thật buồn cho bạn, đến năm 2020 rồi mà vẫn không có người trả lời. Mình cũng định trả lời nhưng có lẽ nó không cần nữa rồi. Mình rất xin lỗi vì bây giờ mình mới nhìn thấy câu hỏi của bạn. Thôi thì lỡ rồi, mình chỉ nói vậy coi như an ủi phần nào cho tâm hồn mỏng manh đã bị tổn thương sâu sắc của bạn. Chân thành xin lỗi.
Ta có AEED =dt(AEN)dt(DEN) =hA→MNhD→MN =dt(AMN)dt(DMN)
Mà dt(AMN) = 1/4 dt(ABN) = 1/4 . 1/2 dt(ABC) = 1/8 dt(ABC)
dt(DMN) = dt(ABC) - dt(AMN) - dt(BDM) - dt(CDN) = dt(ABC) - 1/8 dt(ABC) - 3/8 dt(ABC) - 1/4 dt(ABC) = 1/4 dt(ABC)
Vậy AEED =dt(AMN)dt(DMN) =18 dt(ABC)14 dt(ABC) =12 , suy ra AE/AD = 1/3
Cách 2: Giải theo phương pháp bậc THCS (của bạn Lê Quang Vinh)
DN là đường trung bình của tam giác ABC => DN // AB và DN = 1/2 AB
DN // AB => Hai tam giác EAM và EDN đồng dạng => EA/ED = AM/DN = 1/2 (vì AM = 1/4 AB, DN = 1/2 AB)
=> AE/AD = 1/3
k mình nha
không nên:
Gọi n số tự nhiên liên tiếp là a; a + 1;...; a + n - 1
Ta có: a + (a + 1) + (a + 2) +...+ (a + n - 1)
= na + n(n - 1) : 2
= n(a + (n - 1) : 2)
a) Nếu n lẻ thì n - 1 chẵn nên (n - 1) : 2 là số tự nhiên, do đó --> đpcm.
b) Nếu n chẵn thì n - 1 lẻ nên (n - 1) : 2 không là số tự nhiên, do đó --> đpcm
Gọi n số tự nhiên liên tiếp là a; a + 1;...; a + n - 1
Ta có: a + (a + 1) + (a + 2) +...+ (a + n - 1)
= na + n(n - 1) : 2
= n(a + (n - 1) : 2)
a) Nếu n lẻ thì n - 1 chẵn nên (n - 1) : 2 là số tự nhiên, do đó --> đpcm.
b) Nếu n chẵn thì n - 1 lẻ nên (n - 1) : 2 không là số tự nhiên, do đó --> đpcm
Ai tích mk mk sẽ tích lại
Bài 1 :
Nếu n lẻ thì n + 1 chẵn do đó tổng n số tự nhiên liên tiếp là \(\frac{n.\left(n+1\right)}{2}\) là số chẵn nên không chia hết cho n vì n là số lẻ
Bài 2 :
Nếu n chẵn thì n + 1 lẻ do đó tổng n số tự nhiên liên tiếp là \(\frac{n.\left(n+1\right)}{2}\) là số chẵn nên chia hết cho n vì n là số chẵn