Tìm số tự nhiên n biết 5n+2n chia hết cho 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5n + 2 chia hết cho 2n + 9
⇒ 2(5n + 2) chia hết cho 2n + 9
⇒ 10n + 4 chia hết cho 2n + 9
⇒ 10n + 45 - 41 chia hết cho 2n + 9
⇒ 5(2n + 9) - 41 chia hết cho 2n + 9
⇒ 41 chia hết cho 2n + 9
⇒ 2n + 9 ∈ Ư(41) = {1;-1;41;-41}
⇒ 2n ∈ {-8; -10; 32; -50}
⇒ n ∈ {-4; -5; 16; -25}
Mà n là số tự nhiên
⇒ n = 16
Ta có: 5n+10 chia hết cho n-2
=>5n-10+10+10 chia hết cho n-2
=>5.(n-2)+20 chia hết cho n-2
=>20 chia hết cho n-2
=>n-2=Ư(20)=(1,2,4,5,10,20)
=>n=(3,4,6,7,12,22)
Vậy n=3,4,6,7,12,22
Lời giải:
$5n+1\vdots 7$
$\Rightarrow 5n+1+14\vdots 7$
$\Rightarrow 5n+15\vdots 7$
$\Rightarrow 5(n+3)\vdots 7\Rightarrow n+3\vdots 7$
$\Rightarrow n=7k-3$ với $k\in\mathbb{N}^*$
3n + 5 ⋮ n (n \(\ne\) -5)
3n + 5 ⋮ n
5 ⋮ n
n \(\in\) Ư(5) = {-5; -1; 1; 5}
Vì n \(\in\) N nên n \(\in\) {1; 5}
b, 18 - 5n ⋮ n (n \(\ne\) 0)
18 ⋮ n
n \(\in\) Ư(18) = { -18; -9; -6; -3; -2; -1; 1; 2; 3; 6; 9; 18}
Vì n \(\in\) {1; 2; 3; 6; 9; 18}
a) Ta có : 3n+40\(⋮\)n+4
\(\Rightarrow\)3n+12+28\(⋮\)n+4
\(\Rightarrow\)3(n+4)+28\(⋮\)n+4
Vì 3(n+4)\(⋮\)n+4 nên 28\(⋮\)n+4
\(\Rightarrow n+4\inƯ\left(28\right)=\left\{\pm1;\pm2\pm4;\pm7;\pm14;\pm28\right\}\)
+) n+4=-1\(\Rightarrow\)-5 (không thỏa mãn)
+) n+4=1\(\Rightarrow\)n=-3 (không thỏa mãn)
+) n+4=-2\(\Rightarrow\)n=-6 (không thỏa mãn)
+) n+4=2\(\Rightarrow\)n=-2 (không thỏa mãn)
+) n+4=-4\(\Rightarrow\)n=-8 (không thỏa mãn)
+) n+4=4\(\Rightarrow\)n=0 (thỏa mãn)
+) n+4=-7\(\Rightarrow\)n=-11 (không thỏa mãn)
+) n+4=7\(\Rightarrow\)n=3 (thỏa mãn)
+) n+4=-14\(\Rightarrow\)n=-18 (không thỏa mãn)
+) n+4=14\(\Rightarrow\)n=10 (thỏa mãn)
+) n+4=-28\(\Rightarrow\)n=-32 (không thỏa mãn)
+) n+4=28\(\Rightarrow\)n=24 (thỏa mãn)
Vậy n\(\in\){0;3;10;24}
b) Ta có : 5n+2\(⋮\)2n+9
\(\Rightarrow\)10n+4\(⋮\)10n+45
\(\Rightarrow\)10+45-41\(⋮\)10n+45
Vì 10n+45\(⋮\)10n+45 nên 41\(⋮\)10n+45
\(\Rightarrow10n+45\inƯ\left(41\right)=\left\{\pm1;\pm41\right\}\)
+) 10n+45=-1\(\Rightarrow\)10n=-46\(\Rightarrow\)n=\(-\frac{23}{5}\)(không thỏa mãn)
+) 10n+45=1\(\Rightarrow\)10n=-44\(\Rightarrow\)n=\(-\frac{22}{5}\)(không thỏa mãn)
+) 10n+45=-41\(\Rightarrow\)10n=-86\(\Rightarrow\)n=\(-\frac{43}{5}\)(không thỏa mãn)
+) 10n+45=41\(\Rightarrow\)10n=-4\(\Rightarrow\)n=\(-\frac{2}{5}\)(không thỏa mãn)
Vậy không tìm được giá trị của n thỏa mãn bài toán.
a) 16 - 3n chia hết cho n +4
n+ 4 chia hết cho n+4
=) (16 - 3n ) - ( n + 4) chia hết cho n + 4
16 - 3n - n- 4 chia hết n + 4
12 +4n chia hết cho n +4
= ) n +4 thuộc Ư ( 12 + 4n )
?????
hic mới biết làm tới đây thông cảm
A. \(\left(5n+2\right)⋮\left(9-2n\right)\Rightarrow2\left(5n+2\right)=10n+4=10n-45+49=5\left(2n-9\right)+49⋮\left(9-2n\right)\)
\(\Leftrightarrow49⋮\left(9-2n\right)\)mà \(n\)là số tự nhiên nên \(9-2n\inƯ\left(49\right)=\left\{-49,-7,-1,1,7,49\right\}\)
\(\Leftrightarrow n\in\left\{29,8,5,4,1\right\}\)(vì \(n\)là số tự nhiên)
B. \(4n+3=4n+12-9=2\left(2n+6\right)-9⋮\left(2n+6\right)\Leftrightarrow9⋮\left(2n+6\right)\)
mà \(n\)là số tự nhiên nên \(2n+6\inƯ\left(9\right)\)mà \(2n+6\)là số chẵn do \(n\)là số tự nhiên.
Do đó không có giá trị của \(n\)thỏa mãn.
5n + 19 chia hết cho 2n + 1
⇒ 2(5n + 19) chia hết cho 2n + 1
⇒ 10n + 38 chia hết cho 2n + 1
⇒ 10n + 5 + 33 chia hết cho 2n + 1
⇒ 5(2n + 1) + 33 chia hết cho 2n + 1
⇒ 33 chia hết cho 2n + 1
⇒ 2n + 1 ∈ Ư(33) = {1; -1; 3; -3; 11; -11; 33; -33}
Mà: n ∈ N
⇒ 2n + 1 ∈ {1; 3; 11; 33}
⇒ n ∈ {0; 1; 5; 16}
5n+19 chia hết cho 2n+1
=> 10n+38 chia hết cho 2n+1
=> 5(2n+1)+33 chia hết cho 2n+1
=> 33 chia hết cho 2n+1 ( Vì 5(2n+1) luôn chia hết cho 2n+1 với n là STN )
=> 2n+1 thuộc Ư(33)={1;-1;33;-33}
=> 2n thuộc {0;-2;32;-34}
=> n thuộc {0;-1;16;-17}
Đến đây bạn thử lại từng giá trị của x vào đề bài rồi kết luận nhé.