giải hộ mk nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cường có số thời gian rảnh rỗi là: \(1-\frac{1}{3}-\frac{1}{6}-\frac{1}{12}-\frac{1}{8}-\frac{1}{24}=\frac{1}{4}\)
25/9-2=25/9-18/9=7/9
4-5/7=28/7-2/7=26/7
189/45-2=189/45-90/45=99/45
6-1515/1818=6-15/18=6-5/6=36/6-5/6=31/6
a) Thay m=3 vào hệ pt, ta được:
\(\left\{{}\begin{matrix}x+3y=3\\3x+4y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+9y=9\\3x+4y=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5y=3\\x+3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3}{5}\\x=3-3y=3-3\cdot\dfrac{3}{5}=\dfrac{6}{5}\end{matrix}\right.\)
Vậy: Khi m=3 thì hệ phương trình có nghiệm duy nhất là \(\left(x,y\right)=\left(\dfrac{6}{5};\dfrac{3}{5}\right)\)
a) Thay m=3 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x+3y=3\\3x+4y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+9y=9\\3x+4y=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5y=3\\x+3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3}{5}\\x=3-3\cdot\dfrac{3}{5}=\dfrac{15}{5}-\dfrac{9}{5}=\dfrac{6}{5}\end{matrix}\right.\)
Vậy: \(\left(x,y\right)=\left(\dfrac{6}{5};\dfrac{3}{5}\right)\)
2. ĐKXĐ: \(x\ge0,x\ne1\)
\(P=\left(\sqrt{x}-\dfrac{x+2}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{\sqrt{x}-4}{1-x}\right)\)
\(=\dfrac{x+\sqrt{x}-x-2}{\sqrt{x}+1}:\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}:\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}:\dfrac{x-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}.\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)
\(P=\dfrac{1}{2}\Rightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+2}=\dfrac{1}{2}\Rightarrow2\sqrt{x}-2=\sqrt{x}+2\Rightarrow\sqrt{x}=4\Rightarrow x=16\)
b) Ta có: \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}=1-\dfrac{3}{\sqrt{x}+2}\)
Ta có: \(\sqrt{x}+2\ge2\Rightarrow\dfrac{3}{\sqrt{x}+2}\le\dfrac{3}{2}\Rightarrow1-\dfrac{3}{\sqrt{x}+2}\ge-\dfrac{1}{2}\)
\(\Rightarrow P_{min}=-\dfrac{1}{2}\) khi \(x=0\)
9. C. warned /n/ các từ còn lại theo quy tắc (p, k, ch, s, p,...)
10. A. put /u/ các từ còn lại là /a/
11. B. role /au/ các từ còn lại là /o/
12. B. material /i/ các từ còn lại là /ai/
B= 1.99+2.98+2.97+...98.2+99.1
=1.99+2.(99-1)+3.(99-2)+...+98.(99-97)+99.(99-98)
=1.99+2.99-1.2+3.99-2.3+...+98.99-97.98+99.99-98.99
=(1.99+2.99+3.99+...+98.99+99.99)-(1.2+2.3+3.4+...+97.98+98.99)
=99.(1+2+3+...+98+99)-(1.2+2.3+3.4+...+97.98+98.99)
=99.4950-(1.2+2.3+3.4+...+97.98+98.99)
=490050-(1.2+2.3+3.4+...+97.98+98.99)
Đặt C=1.2+2.3+3.4+...+97.98+98.99
=> 3C=1.2.3+2.3.3+3.4.3+...+97.98.3+98.99.3
=1.2.3+2.3.(4-1)+...+98.99.(100-97)
=1.2.3+2.3.4-1.2.3+...+98.99.100-97.98.99
=98.99.100
=> A=(98.99.100):3=323400
Vậy B=490050-323400=166650
=1.99+2.(99-1)+3.(99-2)+4.(99-3)+......+99.(99-98)
=99.(1+2+3+.......+99)-(2+2.3+3.4+........+98.99)
=99.(1+99).99:2-98.99.100:3
=99.50.99-98.33.100
=490050-323400=166650
Ta có :
\(x^2+y^2=1\)
\(\Rightarrow x^2+2xy+y^2=1+2xy\)
\(\Rightarrow\left(x+y\right)^2=1+2xy\)
Để (x+y)2 đạt giá trị lớn nhất ta tính giá trị lớn nhất của 1 + 2xy
Ta có :
\(x^2+2xy+y^2=1+2xy\)(1)
\(x^2-2xy+y^2=1-2xy\)(2)
Trừ vế theo vế của (1) và (2) ta được
\(x^2+2xy+y^2-x^2+2xy-y^2=1+2xy-1+2xy\)
\(\Leftrightarrow4xy=4xy\)
\(\Leftrightarrow xy=1\)
Thay xy = 1 vào 1 + 2xy ta được 1 + 2 = 3
Vậy GTNN của A là 3
P/S : Đây là cách của mình nhưng mình không chắc bn có thể tham khảo
Áp dụng bất đẳng thức Cauchy - schwarz , ta có :
\(\left(x^2+y^2\right)\left(1^2+1^2\right)\ge\left(x+y\right)^2\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Rightarrow\left(x+y\right)^2\le2\)
Vậy max(x+y)2 = 2