Chứng minh rằng với mọi số tự nhiên n thì phân số A=\(\dfrac{12n+1}{30n+2}\)là phân số tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d = ƯCLN ( 14n + 3 ; 21n + 5 )
Ta có :
14n + 3 \(⋮\)d ; 21n + 5 \(⋮\)d
=> 3 ( 14n + 3 ) \(⋮\)d ; 2 ( 21n + 5 ) \(⋮\)d
=> 42n + 9 \(⋮\)d ; 42n + 10 \(⋮\)d
=> ( 42n + 10 ) - ( 42n + 9 ) \(⋮\)d
=> 1 \(⋮\)d
=> d \(\in\){ 1 ; - 1 }
=> \(\frac{14n+3}{21n+5}\)là phân số tối giản
Để phân số n+1/2n+3 là phân số tối giản thì (n+1; 2n+3) =1
Gọi (n+1; 2n+3) =d => n+1 \(⋮\)d; 2n+3 \(⋮\)d
=> (2n+3) - (n+1) \(⋮\)d
=> (2n+3) -2(n+1) \(⋮\)d
=> 2n+3 -2n -2 \(⋮\)d
=> 1 \(⋮\)d
=> n+1/2n+3 là phân số tối giản
Vậy...
Gọi d là ƯC(n+1 ; 2n + 3)
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}}\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)
=> ( 2n + 3 ) - ( 2n + 2 ) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN(n +1 ; 2n + 3) = 1
=> \(\frac{n+1}{2n+3}\)tối giản ( đpcm )
Bạn xem ở đây: Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath hoặc
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Gọi d = ƯCLN (12n + 1, 30n + 1)
=> 12n + 1 chia hết cho d
và 30n + 1 chia hết cho d
=> 5(12n + 2) = 60n + 10 chia hết cho d
và 2(30n + 1) = 60n + 2 chia hết cho d
=> (60n + 10) - (60n + 2) = 8 chia hết cho d => d = 1, 2, 4 hoặc 8
Do 12n + 1 là số lẻ nên d không thể bằng 2, 4, 8 . vậy d = 1
=> phân số đã cho là phân số tối giản
Để chứng minh 12n+1/30n+2 là phân số tối giản thì cần chứng tỏ 12n+1 và 30n+2 nguyên tố cùng nhau
Gọi ƯCLN(12n+1,30n+2)=d (d∈N)
=> 12n+1 chia hết cho d => 5(12n+1) chia hết cho d => 60n+5 chia hết cho d
30n+2 chia hết cho d => 2(30n+2) chia hết cho d => 60n+4 chia hết cho d
=> (60n+5)-(60n+4) chia hết cho d
=> 1 chia hết cho d
=> d∈Ư(1)={1}
=> d=1
=> ƯCLN(12n+1,30n+2)=1
Vậy 12n+1/30n+2 là phân số tối giản
k cho mk nha
Đặt \(ƯCLN\left(12n+1;30n+2\right)=d\)
\(\Rightarrow\left\{\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\Rightarrow\left\{\begin{matrix}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}60n+5⋮d\\60n+4⋮d\end{matrix}\right.\)\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy phân số \(A=\frac{12n+1}{30n+2}\) là phân số tối giản (Đpcm)
Để \(\frac{12n+1}{30n+2}\) tối giản thì ƯCLN(12n+1; 30n+2) = 1
Đặt d = ƯCLN(12n+1; 30n+2)
\(\Leftrightarrow\left\{\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{matrix}\right.\Leftrightarrow}\left\{\begin{matrix}60n+5⋮d\\60n+4⋮d\end{matrix}\right.\)
\(\Rightarrow\) (60n + 5) - (60n + 4) \(⋮\) d
\(\Rightarrow\) 60n + 5 - 60n - 4 \(⋮\) d
\(\Rightarrow\) 1 \(⋮\) d \(\Rightarrow\) d = 1
Vậy \(\frac{12n+1}{30n+2}\) tối giản (chứng minh xong).