Bài 4: Cho tam giác MNK vuông tại M. Biết MN = 9cm; MK = 12cm.
a. Tính NK.
b. Trên tia đối của tia MN lấy điểm I sao cho MN = MI. Chứng minh: ΔKNI cân. c. Từ M vẽ MA ⊥ NK tại A, MB ⊥ IK tại B. Chứng minh ΔMAK = ΔMBK.
d. Chứng minh: AB // NI.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: NK=15cm
b: Xét ΔKNI có
KM là đường cao
KM là đường trung tuyến
Do đó: ΔKNI cân tại K
c: Xét ΔMAK vuông tại A và ΔMBK vuông tại B có
KM chung
\(\widehat{AKM}=\widehat{BKM}\)
Do đó: ΔMAK=ΔMBK
d: Ta có: ΔMAK=ΔMBK
nên KA=KB
Xét ΔKIN có KB/KI=KA/KN
nên AB//IN
a: NK=căn 9^2+12^2=15cm
b: Xét ΔKIN có
KM vừalà đườg cao, vừa là trung tuyến
=>ΔKIN cân tại K
c: Xét ΔKBM vuông tại B và ΔKAM vuông tại A có
KM chung
góc BKM=góc AKM
=>ΔKBM=ΔKAM
=>KB=KA
d: Xét ΔKIN có KB/KI=KA/KN
=>BA//IN
a: NK=căn 9^2+12^2=15cm
b: Xét ΔKIN có
KM vừa là đường cao, vừa là trung tuyến
=>ΔKIN cân tại K
c: Xét ΔKBM vuông tại B và ΔKAM vuông tại A có
KM chung
góc BKM=góc AKM
=>ΔKBM=ΔKAM
d: ΔKBM=ΔKAM
=>KB=KA
Xét ΔKIN có KB/KI=KA/KN
nên AB//IN
a: NK=15cm
b: Xét ΔKNI cso
KM là đường cao
KM là đường trung tuyến
DO đó: ΔKNI cân tại K
c: Xét ΔMAK vuông tại A và ΔMBK vuông tại B có
MK chung
\(\widehat{AKM}=\widehat{BKM}\)
Do đó: ΔMAK=ΔMBK
d: Xét ΔKIN có KB/KI=KA/KN
nên AB//IN
a: NK=căn 9^2+12^2=15cm
b: Xét ΔKNI có
KM vừa là đường cao, vừa là trung tuyến
=>ΔKNI cân tại K
c: Bổ sung đề: MA vuông góc NK, MB vuông góc KI
Xét ΔKBM vuông tại B và ΔKAM vuông tại A có
KM chung
góc BKM=góc AKM
=>ΔKBM=ΔKAM
d: ΔKBM=ΔKAM
=>KB=KA
Xét ΔKIN có KB/KI=KA/KN
nên BA//NI
a) áp dụng định lí py-ta-go, ta có:
\(NK^2=MK^2+MN^2=12^2+9^2=144+81=225\)
\(NK=\sqrt{225}=25\left(cm\right)\)
b)xét tam giác NMK và NIK có:
IM=MN(gt)
MK(chung)
NMK=IMK=90
suy ra tam giác NMK=NIK(c.g.c)
suy ra KN=KI suy ra tam giác KIN cân tại K
c) theo câu a, ta có tam giác NIK cân tại K suy ra KIN=KNI
xét 2 tam giác vuông NAM và IBM có:
NM=MI(gt)
KIN=KIN( tam giác NIK cân tại K)
suy ra tam giác NAM=IBM(CH-GN) suy ra MA=MI
xét 2 tam giác vuông KAM và KBM có:
KM(chung)
MA=MB(cmt)
suy ra tam giác MAK=MBK(CH-CGV)
a) áp dụng định lí py-ta-go, ta có:
NK^2=MK^2+MN^2=12^2+9^2=144+81=225
NK=√225=25(cm)
b)xét tam giác NMK và NIK có:
IM=MN(gt)
MK(chung)
NMK=IMK=90
suy ra tam giác NMK=NIK(c.g.c)
suy ra KN=KI suy ra tam giác KIN cân tại K
c) theo câu a, ta có tam giác NIK cân tại K suy ra KIN=KNI
xét 2 tam giác vuông NAM và IBM có:
NM=MI(gt)
KIN=KIN( tam giác NIK cân tại K)
suy ra tam giác NMA=IMB(CH-GN) suy ra MA=MI
xét 2 tam giác vuông KAM và KBM có:
KM(chung)
MA=MB(cmt)
suy ra tam giác MAK=MBK(CH-CGV)
N M K I A B
a) Áp dụng định lí pi-ta-go vào \(\Delta MNK\)vuông tại M có:
\(NK^2=NM^2+MK^2\Rightarrow NK^2=9^2+12^2\Rightarrow NK=15\)
b) Xét \(\Delta NMK\)vuông tại M và \(\Delta IMK\)vuông tại M có:
MK chung
NM=IM (gt)
\(\Rightarrow\Delta MNK=\Delta IMK\left(cgv-cgv\right)\)
\(\Rightarrow\widehat{NKM}=\widehat{IKM}\)hay \(\widehat{AKM}=\widehat{BKM}\)
Xét \(\Delta MAK\)vuông tại A và \(\Delta MBK\)vuông tại B có:
\(\widehat{AKM}=\widehat{BKM}\)(c/m trên)
MK chung
\(\Rightarrow\Delta MAK=\Delta MBK\left(ch-gn\right)\)
c) Vì \(\Delta MAK=\Delta MBK\)
\(\Rightarrow AK=BK\Rightarrow\Delta ABK\)cân tại K
\(\Rightarrow\widehat{KAB}=\widehat{KBA}\)
Áp dụng tính chất tổng 3 góc trong 1 tam giác có:
\(\widehat{KAB}+\widehat{KBA}+\widehat{NKI}=180^o\)
\(\Rightarrow\widehat{KAB}=\frac{180^o-\widehat{NKI}}{2}\left(1\right)\)
tới đây bn tự làm tiếp
M N K A B I
a) Áp dụng định lý pytago vào \(\Delta MNK\) vuông tại M có:
\(NK^2=NM^2+MK^2\)
\(\Rightarrow NK^2=9^2+12^2\)
\(\Rightarrow NK=15\)
b) Xét \(\Delta NMK\) vuông tại M và \(\Delta IMK\) vuông tại M có:
MK chung
\(NM=IM\left(gt\right)\)
\(\Rightarrow\Delta NMK=\Delta IMK\left(cgv-cgv\right)\)
\(\Rightarrow\widehat{NKM}=\widehat{IKM}\)
hay \(\widehat{AKM}=\widehat{BKM}\)
Xét \(\Delta MAK\) vuông tại A và \(\Delta MBK\) vuông tại B có:
\(\widehat{AKM}=\widehat{BKM}\) (c/m trên)
MK chung
\(\Rightarrow\Delta MAK=\Delta MBK\left(ch-gn\right)\)
c) Vì \(\Delta MAK=\Delta MBK\)
\(\Rightarrow AK=BK\Rightarrow\Delta ABK\) cân tại K
\(\Rightarrow\) \(\widehat{KAB}=\widehat{KBA}\)
Áp dụng tc tổng 3 góc trog 1 t/g ta có:
\(\widehat{KAB}+\widehat{KBA}+\widehat{NKI}=180^o\)
\(\Rightarrow\widehat{KAB}=\dfrac{180^o-\widehat{NKI}}{2}\left(1\right)\) (đoạn này hơi tắt)
Do \(\Delta NMK=\Delta IMK\)
\(\Rightarrow NK=IK\Rightarrow\Delta NKI\) cân tại K
\(\Rightarrow\widehat{KNI}=\widehat{KIN}\)
Áp dng tc tổng 3 góc trog 1 t/g ta có:
\(\widehat{KNI}+\widehat{KIN}+\widehat{NKI}=180^o\)
\(\Rightarrow\widehat{KNI}=\dfrac{180^o-\widehat{NKI}}{2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\widehat{KAB}=\widehat{KNI}\)
mà 2 góc này ở vị trí đồng vị nên AB // NI .
K 9 cm 12 cm M N K I A 1 2 3 4 B 1 2 1 1
a) Ta có: ΔMNK vuông tại M.
\(\Rightarrow NK^2=MN^2+MK^2\)
\(\Rightarrow NK^2=9^2+12^2\)
\(\Rightarrow NK^8=225\)
\(\Rightarrow NK=\sqrt{225}=15\left(cm\right)\)
b) Vì MI là tia đối của tia MN.
\(\Rightarrow\) 3 điểm N, M, I thẳng hàng.
\(\Rightarrow\widehat{M_{12}}=\widehat{M_{34}}\)
Xét ΔMNK và ΔMIK có:
+ MN = MI (gt)
+ \(\widehat{M_{12}}=\widehat{M_{34}}\) (cmt)
+ MK là cạnh chung.
\(\Rightarrow\) ΔMNK = ΔMIK (c-g-c)
\(\Rightarrow\) NK = IK (2 cạnh tương ứng)
\(\Rightarrow\) ΔKNI cân tại K.
Xét ΔMAK và ΔMBK có:
+ \(\widehat{K_1}=\widehat{K_2}\) (ΔMNK = ΔMIK)
+ MK là cạnh chung.
+ \(\widehat{A_1}=\widehat{B_1}=90^o\) (kẻ vuông góc)
\(\Rightarrow\) ΔMAK = ΔMBK (cạnh huyền - góc nhọn)