Tìm \(n\in Z\) để \(H\in Z\):
\(H=\frac{5n-6}{5n-3}+\frac{5n+6}{5n+3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có :
\(n^3+5n=n^2-n+6n\)
\(=\left(n-1\right)n\left(n+1\right)+6n\)
mà \(\left(n-1\right)n\left(n+1\right)⋮2;3\)
\(\Rightarrow\left(n-1\right)n.\left(n+1\right)⋮6\)
\(\Rightarrow6n⋮6\)
\(\Rightarrow n^3+5n⋮6\)
\(\frac{A}{n}=\frac{4n+4}{n}=4+\frac{4}{n}\)
\(\Rightarrow n\in U\left(4\right)\)
Lập bảng tiếp nhé!
\(\frac{B}{n}=\frac{5n+6}{n}=5+\frac{6}{n}\)
Lập bảng
\(2.\)
a)\(\left(\frac{3}{29}-\frac{1}{5}\right)\cdot\frac{29}{3}=\frac{3}{29}\cdot\frac{29}{3}-\frac{1}{5}\cdot\frac{29}{3}=1-\left(1+\frac{14}{15}\right)=1-1-\frac{14}{15}=\frac{14}{15}\)
b)\(\frac{1}{7}\cdot\frac{5}{9}+\frac{5}{9}\cdot\frac{1}{7}+\frac{5}{9}\cdot\frac{3}{7}=\frac{5}{9}\cdot\left(\frac{1}{7}+\frac{1}{7}+\frac{3}{7}\right)=\frac{5}{9}\cdot\frac{5}{7}=\frac{25}{63}\)
\(\frac{5n-7}{n+2}=\frac{5n+10-10-7}{n+2}=\frac{5n+10-17}{n+2}=\)\(\frac{5n+10}{n+2}+\frac{-17}{n+2}\)
Ư(-17)= {-17;-1;1;17}
\(n+2=-17\) \(n=-19\)
\(n+2=-1\) \(n=-3\)
\(n+2=1\) \(n=-1\)
\(n+2=17\) \(n=15\)
\(\Rightarrow n=\left(-19;-3;-1;15\right)\)
2n3-n2+5n+6
=n2(2n+1)-2n2+5n+6
=n2(2n+1)-n(2n+1)+6n+6
=> 6n+6 chia hết 2n+1
3(2n+1)+3 chia hết 2n+1
=> 3 chia hết 2n+1
=> 2n+1 thuộc Ư(3)=1 ; 3 ; -1 ; -3
2n = 0 ; 2 ; -2 ; -4
n = 0 ; 1 ; -1 ; -2
kb vs mik nha
\(\text{a) Để B có giá trị nguyên thì}\)
\(10n⋮\left(5n-3\right)\)
\(\Rightarrow[2.\left(5n-3\right)+6⋮\left(5n-3\right)\)
\(\text{mà }\)\(2.\left(5n-3\right)⋮\left(5n-3\right)\)
\(\Rightarrow6⋮\left(5n-3\right)\)
\(\Rightarrow5n-3\in1;2;3;6;-1;-2;-3;-6\)
\(\Rightarrow5n\in4;5;6;9;2;1;0;-3\)\(\text{Vì }n\in Z\)
\(\Rightarrow n=0\text{hoặc}n=1\)
\(\text{b) Ta có}:B=\frac{10n}{5n-3}=\frac{2.\left(5n-3\right)+6}{5n-3}=2+\frac{6}{5n-3}\)
\(\text{Để B đạt GTLN thì }\frac{6}{5n-3}\text{đạt GTLN}\)
\(\text{Vì }6>0\Rightarrow\frac{6}{5n-3}\text{đạt GTLN khi}\) \(5n-3\text{ đạt GTLN }\)\(\Rightarrow\hept{\begin{cases}5n-3\text{ đạt GTNN}\\5n-3>0\end{cases}}\)
\(\Rightarrow5n-3=2\Rightarrow n=1\)
\(\text{Vậy GTLN của A là}\)\(5\)\(\text{khi }n=1\)
Nhầm đề rồi!