K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn cần đề hay cách làm ?

6 tháng 3 2017

mk can ca hai

19 tháng 1 2015

nếu bạn sd áy tính casio thì vào mode, 7(table) sau đó nhập biểu thức nhấn = ; -5 =; 5 =;1=; tùy theo yêu cầu của đề tìm số lớn hay nhỏ nhất thì chọn

 

22 tháng 11 2018

Đề GTLN A mình thấy nó sao sao ấy! Cần suy nghĩ thêm. Mà bạn cũng nên xem lại đề =))

\(B=1999+\left(x+2\right)^2+\left(y+3\right)^4\)

Ta có BĐT: Với n chẵn thì: \(a^n\ge0\)

Do vậy,ta có: \(\left(x+2\right)^2\ge0\)

\(\left(y+3\right)^4\ge0\)

Do đó \(B=1999+\left(x+2\right)^2+\left(y+3\right)^4\ge1999\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y+3\right)^4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+2=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-3\end{cases}}}\)

Vậy \(B_{min}=1999\Leftrightarrow\hept{\begin{cases}x=-2\\y=-3\end{cases}}\)

AH
Akai Haruma
Giáo viên
15 tháng 6 2023

Đề đọc khó hiểu. Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.

10 tháng 5 2022

Bài 1: -Sửa đề: a,b,c>0

-Ta c/m: \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)

-Vậy BĐT đã được c/m.

-Quay lại bài toán:

\(\sqrt{3\left(ab+bc+ca\right)}\le a+b+c=1\)

\(\Rightarrow3\left(ab+bc+ca\right)\le1\)

\(\Rightarrow ab+bc+ca\le\dfrac{1}{3}< \dfrac{1}{2}\left(đpcm\right)\)

10 tháng 5 2022

Bài 2:

-Ta c/m BĐT \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) với A,B là các phân thức.

\(\Leftrightarrow\left(\left|A\right|+\left|B\right|\right)^2\ge\left(\left|A+B\right|\right)^2\)

\(\Leftrightarrow A^2+2\left|A\right|\left|B\right|+B^2\ge A^2+2AB+B^2\)

\(\Leftrightarrow\left|A\right|\left|B\right|\ge AB\) (luôn đúng)

-Vậy BĐT đã được c/m.

-Dấu "=" xảy ra khi \(\left[{}\begin{matrix}A,B\ge0\\A,B\le0\end{matrix}\right.\)

-Quay lại bài toán:

\(P=\left|x-2\right|+\left|x-3\right|=\left|x-2\right|+\left|3-x\right|\ge\left|x-2+3-x\right|=\left|1\right|=1\)

\(P=1\Leftrightarrow\left[{}\begin{matrix}\left(x-2\right)\left(3-x\right)\ge0\\\left(x-2\right)\left(3-x\right)\le0\end{matrix}\right.\Leftrightarrow2\le x\le3\)

-Vậy \(P_{min}=1\)

25 tháng 7 2018

\(x^2\left(2-x^2\right)\)

\(=x^2.2-\left(x^2\right)^2\)

\(=2x^2-\left(x^2\right)^2\)

\(=-x^4+2x^2\)

=> BT ko có GTLN/GTNN

25 tháng 7 2018

Tớ cũng nghĩ vậy nhưng ko biết đúng hay sai đây

10 tháng 9 2017

a, Ta có: \(A=\left|x+2\right|+\left|9-x\right|\ge\left|X+2+9-x\right|=11\)

Dấu "=' xảy ra khi \(\left(x+2\right)\left(9-x\right)\ge0\Leftrightarrow-2\le x\le9\)

Vậy MinA = 11 khi -2 =< x =< 9

b, Vì \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow B=\frac{3}{4}-\left(x-1\right)^2\le\frac{3}{4}\)

Dấu "=" xảy ra khi x = 1

Vậy MaxB = 3/4 khi x=1

10 tháng 9 2017

Ta có :\(A=\left|x+2\right|+\left|9-x\right|\ge\left|x+2+9-x\right|=11\)

Vậy \(A_{min}=11\) khi \(2\le x\le9\)

18 tháng 3 2018

a) M=2018+|1-2x|

nhận thấy:|1-2x|>=0 với mọi x=> M =2018+|1-2x|>=2018

                    dấu"=" xảy ra <=>|1-2x|=0<=>1-2x=0=>2x=1=>x=1/2

vậy giá trị nhỏ nhất của M=2018<=>x=1/2

b)N=2018-(1-2x)^2018

nhận thấy;(1-2x)^2018>=0 với mọi x=>-(1-2x)<=0 với mọi x=>N=2018-(1-2x)^2018<=2018

dấu bằng xảy ra <=>(1-2x)^2018=0=>1-2x=0=>2x=1=>x=1/2

vậy giá trị lớn nhất của N=2018<=>x=1/2

c)P=7+|x-1|+|2-x|

áp dụng |A|+|B|>=|A+B|. dấu "=" xảy ra<=>A.B=0 ta có

P=7+|x-1|+|2-x|>=7+|x-1+2-x|=7+1+8

dấu "=" xảy ra <=>(x-1). (2-x)=0

<=>x-1=0 hoặc 2-x=0<=>x=1 hoặc x=2

vậy giá trị nhỏ nhất của P=8<=> x=1 hoặc x=2