ai giải giùm em bài này với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b,\Leftrightarrow\left\{{}\begin{matrix}m-4=1\\m-1\ne3\end{matrix}\right.\Leftrightarrow m=5\\ c,\Leftrightarrow A\left(3;0\right)\in\left(d_2\right)\Leftrightarrow3m-12+m-1=0\Leftrightarrow m=\dfrac{13}{4}\\ d,\text{PT giao Ox và Oy: }\left\{{}\begin{matrix}y=0\Leftrightarrow x=\dfrac{1-m}{m-4}\Leftrightarrow OA=\left|\dfrac{m-1}{m-4}\right|\\x=0\Leftrightarrow y=m-1\Leftrightarrow OB=\left|m-1\right|\end{matrix}\right.\\ \text{Kẻ }OH\perp\left(d\right)\Leftrightarrow\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=\dfrac{\left(m-4\right)^2}{\left(m-1\right)^2}+\dfrac{1}{\left(m-1\right)^2}\\ \text{Đặt }OH^2=t\Leftrightarrow\dfrac{1}{t}=\dfrac{m^2-8m+17}{m^2-2m+1}\\ \Leftrightarrow m^2t-8mt+17t=m^2-2m+1\\ \Leftrightarrow m^2\left(t-1\right)-2m\left(4t-1\right)+17t-1=0\\ \Leftrightarrow\Delta'=\left(4t-1\right)^2-\left(t-1\right)\left(17t-1\right)\ge0\\ \Leftrightarrow-t^2+10t\ge0\Leftrightarrow0\le t\le10\\ \Leftrightarrow OH_{max}=\sqrt{10}\Leftrightarrow\dfrac{m^2-2m+1}{m^2-8m+17}=10\Leftrightarrow...\)
Chỉ khi x + y + z = 0 mới như vậy.
Cụ thể :
Ta có :
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3+z^3-3xy^2-3x^2y-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2+z^2-\left(x+y\right)z\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left[x^2+y^2+2xy+z^2-xz-yz-3xy\right]\)
\(=0\) là BS xyz
Đề dài thế này sao giải thích nhanh cho e đc
Part 1
1 C
2 B
3 D
4 C
5 B
6 A
Part 2
1 T
2 F
3 F
4 F
V
1 That old house has just been bought
2 If he doesn't take these pills, he won't be better
3 I suggest taking a train
4 Spending the weekend in the countryside is very wonderful
a: Xét ΔKMB vuông tại B và ΔKNA vuông tại A có
KM=KN
góc K chung
DO đó: ΔKMB=ΔKNA
b: Ta có: ΔKMB=ΔKNA
nên MB=NA
c: Xét ΔANM vuông tại A và ΔBMN vuông tại B có
MN chung
AN=BM
Do đó: ΔANM=ΔBMN