Chung minh rang : neu (a,b)=1 thi (a^2,a+b)=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a-2:3 => a-2+3:3 =>a+1:3
a-4:4 => a-4+5:5 => a+1:5
a-6:7 => a-6+7:7 => a+1:7
Vậy a+1 là bọi của 3,5,7
a nhỏ nhất nên a+1 nhỏ nhất
a+1 là BCNN(3;5;7)=105
a=104
2) sooschia hết cho 4 phải có 2cs tận cùng chia hết cho 4
Ta có cd chia hết cho 4 nên abcd chia hết cho 4
Câu b tương tự
gọi x là số ngày hoàn thành công ziệc của A ( x>0)
gọi y là số ngày hoàn thành công ziệc của B(y>0)
Một ngày A làm được \(\frac{1}{x}\)công ziệc
Một ngày B làm đc \(\frac{1}{y}\)công ziệc
Ta có phương trình \(6\left(\frac{1}{x}+\frac{1}{y}\right)=1\)
\(=>\frac{6}{x}+\frac{6}{y}=1\left(1\right)\)
ta có \(x-y=9\left(2\right)\)
ta có \(\hept{\begin{cases}\frac{6}{x}+\frac{6}{y}=1\\x-y=9\end{cases}\Leftrightarrow\hept{\begin{cases}6x+6y=xy\\x-y=9\end{cases}\Leftrightarrow}\hept{\begin{cases}6y+6\left(y+9\right)=\left(y+9\right)y\\x=9+y\end{cases}}}\)
\(=>\hept{\begin{cases}6y+6y+54=y^2+9y\\x=9+y\end{cases}}\)
\(=>\hept{\begin{cases}y^2-3y-54=0\\x=9+y\end{cases}\Leftrightarrow\hept{\begin{cases}y=9\\x=18\end{cases}}}\)
A làm một mình 3 ngày thì làm được \(3.\frac{1}{18}=\frac{1}{6}\)công ziệc
B phài làm nốt là \(\left(1-\frac{1}{6}\right):\frac{1}{9}=7.5\left(ngày\right)\)
a:Nếu a lẻ thì a=2k+1
\(a^2=\left(2k+1\right)^2=4k^2+4k+1\) chia 4 dư 1
Nếu a chẵn thì a=2k
\(a^2=\left(2k\right)^2=4k^2\) chia hết cho 4
b: Vì a,b là các số lẻ nên a=2c+1; b=2d+1
\(a^2+b^2=\left(2c+1\right)^2+\left(2d+1\right)^2\)
\(=4c^2+4c+1+4d^2+4d+1\)
\(=4c^2+4d^2+4c+4d+2\) không là số chính phương
Ta có:10^28+8=100...008 (27 chữ số 0)
Xét 008 chia hết cho 8 =>10^28+8 chia hết cho 8 (1)
Xét 1+27.0+8=9 chia hết cho 9=>10^28+8 chia hết cho 9 (2)
Mà (8,9)=1 (3).Từ (1),(2),(3) =>10^28+8 chia hết cho (8.9=)72
Nếu chưa học thì giải zầy:
10^28+8=2^28.5^28+8
=2^3.2^25.5^28+8
=8.2^25.5^28+8 chia hết cho 8
Mặt khác:10^28+8 chia hết cho 9(chứng minh như cách 1) và(8,9)=1
=>10^28+8 chia hết cho 8.9=72
abcdeg = ab . 10000 + cd .100 + eg
= (ab . 9999 + cd . 99) +( ab + cd + eg)
= 11. (ab . 909 + cd . 9) +( ab + cd + eg)
Ta thấy 11. (ab . 909 + cd . 9) chia hết cho 11
mà theo bài ra ab + cd + eg
Chia hết cho 11
Vậy nên: 11. (ab . 909 + cd . 9) +( ab + cd + eg) hay abcdeg
Vì 11\(⋮\)11
Vậy...
Vậy