Cho \(a^2+b^2=1\).Tìm giá trị lớn nhất của \(\left(a+b\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*) \(MinA\) :
Ta thấy: a,b,c đều là các số thực không âm.
Do đó : \(A\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=0,c=1\) và các hoán vị.
\(*)MaxA\) :
Giả sử \(a\ge b\ge c\) \(\Rightarrow3a\ge a+b+c=1\)
\(\Rightarrow1-3a\le0\)
Ta có : \(A=a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)\)
\(=a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)+3abc-3abc\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)-3abc\)
\(=ab+bc+ca-3abc\)
\(=a\left(b+c\right)+bc\left(1-3a\right)\) \(\le\frac{\left(a+b+c\right)^2}{4}+0\) ( do \(1-3a\le0\) ) \(=\frac{1}{4}\)
hay \(A\le\frac{1}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=\frac{1}{2},c=0\) và các hoán vị.
\(\)
\(\frac{1}{a-1}+\frac{1}{b-1}+\frac{1}{c-1}=2\)
\(\Leftrightarrow\frac{1}{a-1}=\left(1-\frac{1}{b-1}\right)+\left(1-\frac{1}{c-1}\right)\)
\(\Leftrightarrow\frac{1}{a-1}=\frac{b-2}{b-1}+\frac{c-2}{c-1}\)
Áp dụng BĐT Cauchy ta có : \(\frac{1}{a-1}=\frac{b-2}{b-1}+\frac{c-2}{c-1}\ge2\sqrt{\frac{b-2}{b-1}.\frac{c-2}{c-1}}\)
Tương tự : \(\frac{1}{b-1}\ge2\sqrt{\frac{a-2}{a-1}.\frac{c-2}{c-1}}\)
\(\frac{1}{c-1}\ge2\sqrt{\frac{b-2}{b-1}.\frac{a-2}{a-1}}\)
Nhân các BĐT theo vế :
\(\frac{1}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}\ge\frac{8\left(a-2\right)\left(b-2\right)\left(c-2\right)}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}\)
\(\Leftrightarrow8\left(a-2\right)\left(b-2\right)\left(c-2\right)\le1\Leftrightarrow\left(a-2\right)\left(b-2\right)\left(c-2\right)\le\frac{1}{8}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{5}{2}\)
Vậy maxH = 1/8 <=> a = b = c = 5/2
1/ Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{2^2}{4}=\frac{4}{4}=1\)
Dấu "=" xảy ra khi x=y=1
Máy mình bị lỗi nên ko nhìn được các bài tiếp theo
Chúc bạn học tốt :)
Ta có : x+y=2 => x=2-y. Thay vào bt ta đc : xy= (2-y).y = 2y -y^2
Vì y^2 >= 0 =>2y-y^2 nhỏ hơn hoặc bằng 0
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
Cách 1:Giả sử \(a=max\left\{a;b;c\right\}\Rightarrow1-3a\le0\)
Ta có:
\(P=a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)-3abc\)
\(=ab+bc+ca-3abc\)
\(=a\left(b+c\right)+bc\left(1-3a\right)\)
\(\le\frac{\left(a+b+c\right)^2}{4}+0=\frac{1}{4}\)
Đẳng thức xảy ra tại \(a=b=\frac{1}{2};c=0\)
Cách 2:
Ta sẽ đi chứng minh \(a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)\le\left(a+b+c\right)^3\)
\(\Leftrightarrow\Sigma a^2b+\Sigma ab^2-12abc\le\Sigma a^3+3\Sigma a^2b+3\Sigma ab^2+6abc\)
\(\Leftrightarrow a^3+b^3+c^3\ge\Sigma a^2b+\Sigma ab^2-18abc\)
Theo Schur thì \(a^3+b^3+c^3\ge\Sigma a^2b+\Sigma ab^2+3abc\ge\Sigma a^2b+\Sigma ab^2-18abc\)
\(\Rightarrow P\ge\frac{1}{4}\) tại a=b=1/2 ; c=0 và các hoán vị
Cách 3:
\(\frac{1}{4}-P=\frac{\left(a+b+c\right)^3}{4}-\Sigma a^2b-\Sigma ab^2\)
\(=\frac{1}{4}\left(a^3+b^3+c^3-\Sigma a^2b-\Sigma ab^2+3abc\right)+\frac{3}{4}abc\ge0\) ( đúng theo Schur )
Vậy \(P\le\frac{1}{4}\)
Nhớ không nhầm thì hình như trong này có 1 cách của tth_new nhé !
Ta có: \(\left(a-b\right)^2\ge0\forall a,b\Rightarrow a^2-2ab+b^2\ge0\forall a,b\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2=1\\1\ge2ab\end{matrix}\right.\)
\(\left\{{}\begin{matrix}1\ge2ab\\\left(a+b\right)^2=a^2+2ab+b^2\end{matrix}\right.\)\(\Rightarrow a^2+2ab+b^2\le a^2+b^2+1=1+1=2\)
Đẳng thức khi:\(\left\{{}\begin{matrix}a=b\\a^2+b^2=1\end{matrix}\right.\)\(\Rightarrow a=b=\dfrac{\pm\sqrt{2}}{2}\)
@Akai Haruma
lớp 8 ẫu trĩ chỉ biết thế này thôi
Cảm ơn! vì cũng nhờ đó mới biết đến cài này:
\(\left(1+1\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
Tên gọi của nó là Bunyacopxki hay co_si-sa-oa- gì đó. đâu có quan trọng gì.Lớp 8 có ẫu trĩ vẫn làm được đó thôi.