K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2017

Não không "sấm sét" nên không nghĩ được cách nào hay cả :)

\(x^2+\left(2x\right)^2+\left(3x\right)^2+\left(4x\right)^2+\left(5x\right)^2=220\)

\(\Leftrightarrow x^2+4x^2+9x^2+16x^2+25x^2=220\)

\(\Leftrightarrow x^2\cdot\left(1+4+9+16+25\right)=220\)

\(\Leftrightarrow x^2\cdot55=220\)

\(\Leftrightarrow x^2=4\)

\(x>0\Rightarrow x=\sqrt{4}=2\)

Vậy x = 2.

2 tháng 3 2017

\(x^2+\left(2x\right)^2+\left(3x\right)^2+\left(4x\right)^2+\left(5x\right)^2=220\\ \Leftrightarrow x^2+4x^2+16x^2+25x^2=220\\ \Leftrightarrow x^2\left(1+4+9+16+25\right)=220\)

\(\Leftrightarrow55x^2=220\\ \Leftrightarrow x^2=4\\ \Leftrightarrow x=2\)

vậy x = 2

20 tháng 2 2017

=>x^2(1+4+9+16+25)=220
=> x^2.55=220
=> x^2=4
=>x=2 hoặc x= -2 

8 tháng 7 2017

len google di ban

mk chua hoc bai nay

3 tháng 12 2015

x2+(2x)2+(3x)2+(4x)2+(5x)2 = 220

=> x2+22.x2+32.x2+42.x2+52.x2 =220

=> x2 (1+4+9+16+25) = 220

=> x2 . 55 = 220

=> x2 = 220:55 = 4 = 22 = (-2)2

Vi x>0 nen x= 2

29 tháng 1 2017

ta có: x^2 +( 2x)^2 + (3x)^2 + (4x)^2+(5x)^2=220

x^2 + 4x^2 + 9x^2 + 16x^2 + 25x^2 =220

55x^2                                            =220

    x^2                                            =4

mà x> 0 suy ra x=2

nhớ bấm 3 đúng cho mình nhé!

30 tháng 1 2017

bai nay khong phai  la cua lop 5 dau ,cua lop 6 day!!! Nhung ma du sao ket qua cung bang 2

6 tháng 2 2022

Áp dụng công thức: \(A\left(x\right).B\left(x\right)=0\Leftrightarrow\left[{}\begin{matrix}A\left(x\right)=0\\B\left(x\right)=0\end{matrix}\right.\)

a) \(PT\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\4x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{5}{4}\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{2}{3};-\dfrac{5}{4}\right\}\)

b) \(PT\Leftrightarrow\left[{}\begin{matrix}2,3x-6,9=0\\0,1x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-20\end{matrix}\right.\)

Vậy: \(S=\left\{3;20\right\}\)

c) Vì \(x^2+1\ge1>0\forall x\)

\(\Rightarrow4x+2=0\)

\(\Leftrightarrow x=-\dfrac{1}{2}\)

Vậy: \(S=\left\{-\dfrac{1}{2}\right\}\)

d) \(PT\Leftrightarrow\left[{}\begin{matrix}2x+7=0\\x-5=0\\5x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=5\\x=-\dfrac{1}{5}\end{matrix}\right.\)

Vậy: \(S=\left\{-\dfrac{7}{2};5;-\dfrac{1}{5}\right\}\)

a: =>3x-2=0 hoặc 4x+5=0

=>x=2/3 hoặc x=-5/4

b: =>(x-3)(x+20)=0

=>x=3 hoặc x=-20

c: =>4x+2=0

hay x=-1/2

d: =>2x+7=0 hoặc x-5=0 hoặc 5x+1=0

=>x=-7/2 hoặc x=5 hoặc x=-1/5

28 tháng 5 2017

a) (x-1)(5x+3)=(3x-8)(x-1)

= (x-1)(5x+3)-(3x-8)(x-1)=0

=(x-1)[(5x+3)-(3x-8)]=0

=(x-1)(5x+3-3x+8)=0

=(x-1)(2x+11)=0

\(\Leftrightarrow\) x-1=0 hoặc 2x+11=0

\(\Leftrightarrow\) x=1 hoặc x=\(\dfrac{-11}{2}\)

Vậy S={1;\(\dfrac{-11}{2}\)}

b) 3x(25x+15)-35(5x+3)=0

=3x.5(5x+3)-35(5x+3)=0

=15x(5x+3)-35(5x+3)=0

=(5x+3)(15x-35)=0

\(\Leftrightarrow\) 5x+3=0 hoặc 15x-35=0

\(\Leftrightarrow\) x=\(\dfrac{-3}{5}\) hoặc x=\(\dfrac{7}{3}\)

Vậy S={\(\dfrac{-3}{5};\dfrac{7}{3}\)}

c) (2-3x)(x+11)=(3x-2)(2-5x)

=(2-3x)(x+11)-(3x-2)(2-5x)=0

=(3x-2)[(x+11)-(2-5x)]=0

=(3x-2)(x+11-2+5x)=0

=(3x-2)(6x+9)=0

\(\Leftrightarrow\) 3x-2=0 hoặc 6x+9=0

\(\Leftrightarrow\) x=\(\dfrac{2}{3}\) hoặc x=\(\dfrac{-3}{2}\)

Vậy S={\(\dfrac{2}{3};\dfrac{-3}{2}\)}

d) (2x2+1)(4x-3)=(2x2+1)(x-12)

=(2x2+1)(4x-3)-(2x2+1)(x-12)=0

=(2x2+1)[(4x-3)-(x-12)=0

=(2x2+1)(4x-3-x+12)=0

=(2x2+1)(3x+9)=0

\(\Leftrightarrow\)2x2+1=0 hoặc 3x+9=0

\(\Leftrightarrow\)x=\(\dfrac{1}{2}\)hoặc x=\(\dfrac{-1}{2}\) hoặc x=-3

Vậy S={\(\dfrac{1}{2};\dfrac{-1}{2};-3\)}

e) (2x-1)2+(2-x)(2x-1)=0

=(2x-1)[(2x-1)+(2-x)=0

=(2x-1)(2x-1+2-x)=0

=(2x-1)(x+1)=0

\(\Leftrightarrow\) 2x-1=0 hoặc x+1=0

\(\Leftrightarrow\) x=\(\dfrac{-1}{2}\) hoặc x=-1

Vậy S={\(\dfrac{-1}{2}\);-1}

f)(x+2)(3-4x)=x2+4x+4

=(x+2)(3-4x)=(x+2)2

=(x+2)(3-4x)-(x+2)2=0

=(x+2)[(3-4x)-(x+2)]=0

=(x+2)(3-4x-x-2)=0

=(x+2)(-5x+1)=0

\(\Leftrightarrow\) x+2=0 hoặc -5x+1=0

\(\Leftrightarrow\) x=-2 hoặc x=\(\dfrac{1}{5}\)

Vậy S={-2;\(\dfrac{1}{5}\)}