Để (x-8)\(^{2016}\)+ \(\sqrt{y-10}\)=0 thì khi đó x+y=....
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét : \(\left\{\begin{matrix}\left(x-8\right)^{2016}\ge0\\\sqrt{y-10}\ge0\end{matrix}\right.\)
=> Để \(\left(x-8\right)^{2016}+\sqrt{y-10}=0\)
Thì ( x- 8)2016= \(\sqrt{y-10}\)= 0
\(\Rightarrow\left\{\begin{matrix}\left(x-8\right)^{2016}=0\\\sqrt{y-10}=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=8\\y=10\end{matrix}\right.\)
=> x+ y= 8+ 10= 18
Vậy x+ y= 18
Ta có 2 trường hợp:
Th1: (x-8)2016 và \(\sqrt{y-10}\) là 2 số trài dấu.
Nhưng \(\left(x-8\right)^{2016}\ge0\) \(\forall x\)
\(\sqrt{y-10}\ge0\) \(\forall y\)
\(\Rightarrow\)(x-8)2016 và \(\sqrt{y-10}\) ko thể trái dấu
Th2: \(\left(x-8\right)^{2016}=\sqrt{y-10}=0\)
\(\Rightarrow\left\{\begin{matrix}\left(x-8\right)=0\\y-10=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=8\\y=10\end{matrix}\right.\)
Vậy x+y=8+10=18
Vì \(\left(x-8\right)^{2016}\ge;\sqrt{y-10}\ge0\)
\(\Rightarrow\left(x-8\right)^{2016}+\sqrt{y-10}\ge0\)
Mà \(\left(x-8\right)^{2016}+\sqrt{y-10}=0\) \(\Rightarrow\left(x-8\right)^{2016}=0;\sqrt{y-10}=0\)
\(\Rightarrow x-8=0;y-10=0\)
\(\Rightarrow x=8;y=10\)
Ta có :(x - 8)2016 + \(\sqrt{y}-10\) = 0
( x- 8 )2016 >=0 ; \(\sqrt{y-10}>=0\)
=> ( x- 8 ) = 0 => x= 8
=> (y - 10 ) =0 => y = 10
=> x+y = 8+10
=> x+y = 18
1.
ĐKXĐ: $x\geq 1; y\geq 2; z\geq 3$
PT \(\Leftrightarrow x+y+z+8-2\sqrt{x-1}-4\sqrt{y-2}-6\sqrt{z-3}=0\)
\(\Leftrightarrow [(x-1)-2\sqrt{x-1}+1]+[(y-2)-4\sqrt{y-2}+4]+[(z-3)-6\sqrt{z-3}+9]=0\)
\(\Leftrightarrow (\sqrt{x-1}-1)^2+(\sqrt{y-2}-2)^2+(\sqrt{z-3}-3)^2=0\)
\(\Rightarrow \sqrt{x-1}-1=\sqrt{y-2}-2=\sqrt{z-3}-3=0\)
\(\Leftrightarrow \left\{\begin{matrix} x=2\\ y=6\\ z=12\end{matrix}\right.\)
2.
ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow \sqrt{x+1}=1-\sqrt{x}$
$\Rightarrow x+1=(1-\sqrt{x})^2=x+1-2\sqrt{x}$
$\Leftrightarrow 2\sqrt{x}=0$
$\Leftrightarrow x=0$
Thử lại thấy thỏa mãn
Vậy $x=0$
bạn trả lời từng câu cũng được mà :) làm được câu nào thì giúp mình nhé. Tks!
Bạn thêm điều kiện x,y,z lớn hơn 0 nhé :)
Từ giả thiết ta suy ra : \(a^2=b+4032\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2+4032\)
\(\Rightarrow xy+yz+zx=2016\)thay vào :
\(x\sqrt{\frac{\left(2016+y^2\right)\left(2016+z^2\right)}{2016+x^2}}=x\sqrt{\frac{\left(y^2+xy+yz+zx\right)\left(z^2+xy+yz+zx\right)}{x^2+xy+yz+zx}}\)
\(=x\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(z+y\right)\left(z+x\right)}{\left(x+y\right)\left(x+z\right)}}=x\sqrt{\left(y+z\right)^2}=x\left|y+z\right|=xy+xz\)vì x,y,z > 0
Tương tự : \(y\sqrt{\frac{\left(2016+z^2\right)\left(2016+x^2\right)}{2016+y^2}}=xy+zy\)
\(z\sqrt{\frac{\left(2016+x^2\right)\left(2016+y^2\right)}{2016+z^2}}=zx+zy\)
Suy ra \(P=2\left(xy+yz+zx\right)=2.2016=4032\)
\(\left(x-8\right)^{2016}+\sqrt{y-10}=0\)
Mà \(\left(x-8\right)^{2016}+\sqrt{y-10}\ge0\)
\(\Rightarrow\left[\begin{matrix}\left(x-8\right)^{2016}=0\\\sqrt{y-10}=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x-8=0\\y-10=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=8\\y=10\end{matrix}\right.\)
\(\Rightarrow x+y=8+10=18\)
Vậy x + y = 18
\(\left(x-8\right)^{2016}+\sqrt{y-10}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-8\right)^{2016}=0\\\sqrt{y-10}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=8\\y=10\end{matrix}\right.\)
\(\Rightarrow x+y=8+10=18\)
Vậy.........................................