K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2018

Giả sử \(a\left(2-b\right)>1,b\left(2-c\right)>1,c\left(2-a\right)>1\)

\(\Rightarrow abc\left(2-a\right)\left(2-b\right)\left(2-c\right)>1\) (1)

Mặt khác, ta có: 

\(a\left(2-a\right)=-a^2+2a=-\left(a-1\right)^2+1\le1\)

Tương tự, \(b\left(2-b\right)\le1,c\left(2-c\right)\le1\)

\(\Rightarrow abc\left(2-a\right)\left(2-b\right)\left(2-c\right)\le1\),điều này trái với (1)

Vậy điều giả sử là sai.

Do đó ít nhất 1 trong 3 bất đẳng thức trên là sai.

30 tháng 8 2016

b a c A B C H

Xét hình sau.

\(\hept{\begin{cases}\sqrt{a^2+b^2}=AB\\\sqrt{b^2+c^2}=BC\end{cases}}\)

Cần chứng minh \(AB.BC\ge BH.AC\)

Ta có: \(BH.AC=2S_{\Delta ABC}=AB.BC.\sin ABC\)

Vậy cần chứng minh \(AB.BC\ge AB.BC.\sin ABC\Leftrightarrow\sin ABC\le1\)

Bất bẳng thức cuối hiển nhiên đúng, nên ta có đpcm.

27 tháng 11 2017

Với n = 1 => 2^n = n^2

=> bđt trên sai

27 tháng 11 2017
quên cả điều kiên n>=5 nx
4 tháng 1 2020

Áp dụng bđt AM-GM ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

\(a+b+c\ge3\sqrt[3]{abc}\)

Nhân 2 vế của đẳng thức trên ta được:

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

Áp dụng BDT svacxo ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{a+b+c}\)

Dấu = khi a=b=c

Học tốt