tìm k thuộc N biết x^3y^5 + 3x^3y^5 + 5x^3y^5+.......+(2k-1)x^3y^5=3249x^3y^5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhìn biểu thức có vẻ rối, nhưng ta chẳng cần quan tâm cái biến làm gì cả.
Coi như không có biến, ta có :
\(1+3+5+...+\left(2k-1\right)=3249\)
\(\Rightarrow\dfrac{\dfrac{\left(2k-1\right)-1}{2}+1}{2}\cdot\left(2x-1+1\right)=3249\)
\(\Rightarrow CALC\left(k\right)=57\)
Vậy \(k=57\)
\(x^3y^5+3x^3y^5+...+\left(2k-1\right)x^3y^5=3249x^3y^5\)
\(\Leftrightarrow x^3y^5\left[1+2+3+...+\left(2k-1\right)\right]=3249x^3y^5\)
\(\Leftrightarrow1+3+5+...+\left(2k-1\right)=3249\)
\(\Leftrightarrow\frac{\left[\left(2k-1\right)+1\right].\left(\frac{\left(2k-1\right)-1}{2}+1\right)}{2}=3249\)
\(\Leftrightarrow\frac{2k.\left(k-1+1\right)}{2}=3249\)
\(\Leftrightarrow\frac{2k^2}{2}=3249\)
\(\Leftrightarrow k^2=3249=57^2\) ( ko xét k = - 57 vì theo quy luật thi k luôn dương )
\(\Rightarrow k=57\)
Ta có:\(x^3y^5+3x^3y^5+5x^3y^5+...+\left(2k-1\right)x^3y^5=3249x^3y^5\)
\(x^3y^5\left(1+3+5+...+2k-1\right)=3249x^3y^5\)
\(\Rightarrow1+3+5+...+2k-1=3249\)
\(\Rightarrow\frac{\left(\frac{2k-1-1}{2}+1\right).\left(2k-1+1\right)}{2}=3249\)
\(\Rightarrow\frac{k.2k}{2}=3249\)
\(\Rightarrow k^2=3249\)
\(\Rightarrow k=57\) hoặc k=-57
\(a,\left\{{}\begin{matrix}3x-y=5\\4x+2y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-y=5\\2x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\ b,\left\{{}\begin{matrix}5x+2y=9\\x+5y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+2y=9\\5x+25y=55\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+2y=9\\23y=46\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
\(c,\left\{{}\begin{matrix}3x+y=10\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x+3y=30\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}13x=39\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\\ d,\left\{{}\begin{matrix}4x+3y=22\\5x+3y=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\5x+3y=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=2\end{matrix}\right.\)
\(e,\left\{{}\begin{matrix}4x-3y=5\\5x+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x=18\\5x+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
a. \(\left\{{}\begin{matrix}3x-y=5\\4x+2y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x-2y=10\\4x+2y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}10x=20\\6x-2y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
b. \(\left\{{}\begin{matrix}5x+2y=9\\x+5y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+2y=9\\5x+25y=55\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}23y=46\\5x+2y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=1\end{matrix}\right.\)
c. \(\left\{{}\begin{matrix}3x+y=10\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x+3y=30\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}13x=39\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
d. \(\left\{{}\begin{matrix}4x+3y=22\\5x+3y=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\4x+3y=22\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=2\end{matrix}\right.\)
e. \(\left\{{}\begin{matrix}4x-3y=5\\5x+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x=18\\4x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
bn trả lời sai rùi!đáp án là 57 mới đúng