K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2017

Giải:
Ta có: \(3x^3+7=199\)

\(\Rightarrow3x^3=192\)

\(\Rightarrow x^3=64\)

\(\Rightarrow x=4\)

\(\Rightarrow\frac{4+10}{7}=2=\frac{y+6}{9}=\frac{27-z}{11}\)

+) Xét \(\frac{y+6}{9}=2\Rightarrow y=12\)

+) Xét \(\frac{27-z}{11}=2\Rightarrow z=5\)

\(\Rightarrow x+y+z=2+12+5=19\)

Vậy x + y + z = 19

26 tháng 2 2017

@Nguyễn Huy Tú sao câu nèo mình cũng gặp bạn vậy

AH
Akai Haruma
Giáo viên
21 tháng 8

Lời giải:

Đặt $\frac{x+10}{7}=\frac{y+6}{9}=\frac{27-z}{11}=k$

$\Rightarrow x=7k-10; y=9k-6; z=27-11k$

Khi đó:

$3x^2+y^2=199$

$\Rightarrow 3(7k-10)^2+(9k-6)^2=199$

$\Rightarrow 228k^2-528k+336=199$

$\Rightarrow 228k^2-528k+137=0$

Số khá xấu, không biết bạn có viết nhầm đề không?

28 tháng 2 2017

Bạn tính x ra sau đó từ tỉ lệ thức ta tính ra đc y và z.

28 tháng 2 2017

Mình gợi ý nha:

Bạn tính x từ phép tính 3.x3+7=199   (bằng 4)

Rồi bạn tính (x+10)/7   (bằng 2)

Từ đó ta có y+6=18 và 27-z=22

Tính y;z

Tính x+y+z.

18 tháng 2 2021

Ta có \(\frac{x+y+3z}{7}=\frac{y+z+3x}{8}=\frac{z+x+3y}{10}=\frac{x+y+3z+y+z+3x+z+x+3y}{7+8+10}\)

                                                                                              \(=\frac{5\left(x+y+z\right)}{25}=\frac{x+y+z}{5}=\frac{5}{x+y+z}\)(1)

Từ (1) => (x + y + z)2 = 25 

=> \(\orbr{\begin{cases}x+y+z=5\\x+y+z=-5\end{cases}}\)

Khi x + y + z = 5 => \(\frac{5}{x+y+z}=1\)

=> \(\hept{\begin{cases}z+x+3y=10\\y+z+3x=8\\x+y+3z=7\end{cases}}\Rightarrow\hept{\begin{cases}x+y+z+2y=10\\x+y+z+2x=8\\x+y+z+2z=7\end{cases}}\Rightarrow\hept{\begin{cases}5+2y=10\\5+2x=8\\5+2z=7\end{cases}}\Rightarrow\hept{\begin{cases}y=2,5\\x=1,5\\z=1\end{cases}}\)(tm)

Khi x + y + z = -5 => \(\frac{5}{x+y+z}=-1\)

=> \(\hept{\begin{cases}x+y+3z=-7\\y+z+3x=-8\\z+x+3y=-10\end{cases}}\Rightarrow\hept{\begin{cases}x+y+z+2z=-7\\x+y+z+2x=-8\\x+y+z+2y=-10\end{cases}}\Rightarrow\hept{\begin{cases}-5+2z=-7\\-5+2x=-8\\-5+2y=-10\end{cases}}\Rightarrow\hept{\begin{cases}z=-1\\x=-1,5\\y=-2,5\end{cases}}\)(tm)

Vậy các cặp (x;y;z) thỏa mãn là (1,5;2,5;1) ; (-1,5;-2,5;-1) 

21 tháng 1 2019

Ta có:

\(xy+yz+zx=\frac{\left(x+y+z\right)^2-x^2-y^2-z^2}{2}=\frac{7^2-23}{2}=13\)

Ta lại có:

\(xy+z-6=xy+z+1-x-y-z=\left(x-1\right)\left(y-1\right)\)

\(\Rightarrow A=\frac{1}{\left(x-1\right)\left(y-1\right)}+\frac{1}{\left(y-1\right)\left(z-1\right)}+\frac{1}{\left(z-1\right)\left(x-1\right)}\)

\(=\frac{x+y+z-3}{xyz-xy-yz-zx+x+y+z-1}=-1\)