Phân tích đa thức thành nhân tử :
\(x^4-30x^2+31x-30\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^6-9x^5+30x^4-45x^3+30x^2-9x+1\)
\(=\left(x^2\right)^3-9x^5+30x^4-45x^3+30x^2-9x+1^3\)
\(=\left(x^3-3x+1\right)^3\)
\(=x^2\left(x^2+2x+1\right)+x+1\)
\(=x^2\left(x+1\right)^2+x+1\)
\(=\left(x+1\right)\left[x^2\left(x+1\right)+1\right]\)
\(=\left(x+1\right)\left(x^3+x^2+1\right)\)
\(x^4+2x^3+x^2+x+1\)
\(=x^2\left(x+1\right)^2+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3+x^2+1\right)\)
\(x^2\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\\ =\left(x+4\right)^2\left(x^2-1\right)-\left(x^2-1\right)\\ =\left(x^2-1\right)\left[\left(x+4\right)^2-1\right]\\ =\left(x-1\right)\left(x+1\right)\left(x+4-1\right)\left(x+4+1\right)\\ =\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+5\right)\)
\(5x^2-4\left(x^2-2x+1\right)-5=\left(5x^2-5\right)-4\left(x-1\right)^2=5\left(x^2-1\right)-4\left(x-1\right)^2=5\left(x-1\right)\left(x+1\right)-4\left(x-1\right)^2=\left(x-1\right)\left[5\left(x+1\right)-4\left(x-1\right)\right]=\left(x-1\right)\left(5x+5-4x+4\right)=\left(x-1\right)\left(x+9\right)\)
Lời giải:
\(x^6-9x^5+30x^4-45x^3+30x^2-9x+1\)
\(=(x^2)^3-3.(x^2)^2.(3x)+3.x^2(3x)^2-(3x)^3+3x^4-18x^3+30x^2-9x+1\)
\(=(x^2-3x)^3+3x^4-18x^3+30x^2-9x+1\)
\(=(x^2-3x)^3+3(x^4-6x^3+9x^2)+3x^2-9x+1\)
\(=(x^2-3x)^3+3(x^2-3x)^2+3(x^2-3x)+1\)
\(=(x^2-3x+1)^3\)
\(3x^2+x-4=3x^2-3x+4x-4=3x\left(x-1\right)+4\left(x-1\right)=\left(3x+4\right)\left(x-1\right)\)
\(x^4-x^3-x+1=\left(x^4-x^3\right)-\left(x-1\right)=x^3\left(x-1\right)-\left(x-1\right)=\left(x^3-1\right)\left(x-1\right)=\left(x-1\right)^2.\left(x^2+x+1\right)\)
x4 - x3 - x + 1
= (x4 - x3) - (x - 1)
= x3(x - 1) - (x - 1)
= (x3 - 1)(x - 1)
Ta có: \(\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4\)
\(=\left(12x^2+8x+3x+2\right)\left(12x^2+12x-x-1\right)-4\)
\(=\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)-4\)
\(=\left(12x^2+11x\right)^2+\left(12x^2+11x\right)-6\)
\(=\left(12x^2+11x+3\right)\left(12x^2+11x-2\right)\)
x4 - 30x2 + 31x - 30
= x4 + x - 30x2 + 30x - 30
= x(x3 + 1) - 30(x2 - x + 1)
= x(x + 1)(x2 - x + 1) - 30(x2 - x + 1)
= (x2 - x + 1)[x(x + 1) - 30]
= (x2 - x + 1)(x2 + x - 30)
= (x2 - x + 1)(x2 - 5x + 6x - 30)
= (x2 - x + 1)[x(x - 5) + 6(x - 5)]
= (x2 - x + 1)(x - 5)(x + 6)
opps, thank very much