K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2015

Ta có: 4(5a + 3b) - 5(4a + 31b) = 143b => 5(4a + 31b) = 4(5a + 3b) - 143b 

Vì 5a + 3b và 143b đều chia hết cho 13 nên 5(4a + 31b) chia hết cho 13. Mà (5;13) = 1

=> 4a + 31b chia hết cho 13 

13 tháng 2 2020

Ta có 5a + 2b ⋮ 13

⇔ 5a + 2b + 13a ⋮ 13

⇔ 18a +2b ⋮ 13

⇔ 2 ( 9a + b) ⋮ 13

⇔ 9a + b ⋮ 13

Vậy 5a + 2b ⋮ 13 ⇔ 9a + b ⋮ 13 ( a,b ∈ Z )

Sr nhé t chx học dạng này cx k bt trình bày như thế này đc chx

Chỉ trình bày theo ý hiểu thôi

@@Học tốt @@

Chiyuki Fujito

Tái bút : À mà kí hiệu này là s Σ ạ

13 tháng 2 2020

T tưởng là tập hợp Z chứ

1 tháng 12 2019

ĐÂY MÀ LÀ toán 5 ạ??

1 tháng 12 2019

Gọi A là vế trái của BĐT cần chứng minh. Không mất tính tổng quát, ta giả sử a + b + c = 3. Áp dụng BĐT AM - GM ta có:

\(\sqrt{\frac{\left(a+b\right)^3}{8ab\left(4a+4b+c\right)}}+\sqrt{\frac{\left(a+b\right)^3}{8bc\left(4a+4b+c\right)}}+\frac{ab\left(4a+4b+c\right)}{27}\)\(\ge\frac{1}{2}\left(a+b\right)\)

Suy ra 

             \(\sqrt{\frac{\left(a+b\right)^3}{8ab\left(4a+4b+c\right)}}\)\(+\frac{ab\left(4a+4b+c\right)}{54}\ge\frac{1}{4}\left(a+b\right)\)

Tương tự

            \(\sqrt{\frac{\left(b+c\right)^3}{8bc\left(4b+4c+a\right)}}+\frac{bc\left(4b+4c+a\right)}{54}\ge\frac{1}{4}\left(b+c\right)\)

và       \(\sqrt{\frac{\left(c+a\right)^3}{8ca\left(4c+4a+b\right)}}+\frac{ca\left(4c+4a+b\right)}{54}\ge\frac{1}{4}\left(c+a\right)\)

Cộng ba BĐT trên ta có: 

           \(\frac{1}{2\sqrt{2}}A\ge B\)

Với \(A=\frac{1}{54}[ab\left(4a+4b+c\right)+bc\left(4b+4c+a\right)\)

\(+ca\left(4c+4a+b\right)]\)

\(=\frac{1}{54}\left[4ab\left(a+b\right)+4bc\left(b+c\right)+4ca\left(c+a\right)+3abc\right]\)

\(=\frac{1}{54}\left[4\left(a+b+c\right)\left(ab+bc+ca\right)-9abc\right]\)

\(\le\frac{1}{54}\left(a+b+c\right)^3=\frac{1}{2}\)

và \(B=\frac{1}{4}.2\left(a+b+c\right)=\frac{3}{2}\)

Suy ra \(\frac{1}{2\sqrt{2}}A\ge\frac{3}{2}-\frac{1}{2}=1\Rightarrow A\ge2\sqrt{2}\)

Vậy 

              \(\sqrt{\frac{\left(a+b\right)^3}{ab\left(4a+4b+c\right)}}+\sqrt{\frac{\left(a+b\right)^3}{bc\left(4a+4b+c\right)}}+\sqrt{\frac{\left(c+a\right)^3}{ca\left(4c+4a+b\right)}}\ge2\sqrt{2}\)(đpcm)

AH
Akai Haruma
Giáo viên
5 tháng 3 2017

Bài 1)

Đưa về đồng bậc:

\(\left\{{}\begin{matrix}4x^3-y^3=x+2y\\52x^2-82xy+21y^2=-9\end{matrix}\right.\Rightarrow-9\left(4x^3-y^3\right)=\left(x+2y\right)\left(52x^2-82xy+21y^2\right)\)

\(\Leftrightarrow 8x^3+2x^2y-13xy^2+3y^3=0\)

\(\Leftrightarrow (4x-y)(x-y)(2x+3y)\Rightarrow \) \(\left[{}\begin{matrix}x=y\\4x=y\\2x=-3y\end{matrix}\right.\)

Thay từng TH vào hệ phương trình ban đầu ta thấy chỉ TH \(x=y\) thỏa mãn.

\(\Leftrightarrow (x,y)=(1,1),(-1,-1)\)là nghiệm của HPT

AH
Akai Haruma
Giáo viên
5 tháng 3 2017

Bài 2)

Đặt \(P=a+b+c+\frac{3}{4a}+\frac{9}{8b}+\frac{1}{c}\Rightarrow 4P=4a+4b+4c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\)

\(\Leftrightarrow 4P=(a+2b+3c)+\left(3a+\frac{3}{a}\right)+\left(2b+\frac{9}{2b}\right)+\left(c+\frac{4}{c}\right)\)

Áp dụng bất đẳng thức AM-GM:

\(\left\{{}\begin{matrix}3a+\dfrac{3}{a}\ge6\\2b+\dfrac{9}{2b}\ge6\\c+\dfrac{4}{c}\ge4\end{matrix}\right.\)\(\Rightarrow 4P\geq (a+2b+3c)+6+6+4\geq 10+6+6+4=26\)

\(\Leftrightarrow P\geq \frac{13}{2}\) (đpcm)

Dấu bằng xảy ra khi \((a,b,c)=(1,\frac{3}{2},2)\)