Cho \(\frac{a}{b}=\frac{9}{4}\) và \(\frac{b}{c}=\frac{5}{3}\). Tính \(\frac{a-b}{b-c}\)=...
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x+y-z}{5+4-3}=\dfrac{18}{6}=3\)
Do đó: x=15; y=12; z=9
c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{5}=\dfrac{b}{4}=\dfrac{c}{7}=\dfrac{a+2b+c}{5+2\cdot4+7}=\dfrac{10}{20}=\dfrac{1}{2}\)
Do đó: a=5/2; b=2; c=7/2
e: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{2}=\dfrac{a+b}{4+5}=\dfrac{10}{9}\)
Do đó: a=40/9; b=50/9; c=20/9
f: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{2a+b-c}{2\cdot2+3-4}=\dfrac{-12}{3}=-4\)
Do đó: a=-8; b=-12; c=-16
\(A=\frac{11}{9}-\frac{7}{8}+-\frac{2}{3}-\frac{1}{8}+\frac{25}{9}-\frac{4}{3}\)
\(A=1\)
\(B=1\frac{3}{4}:\frac{3}{5}-\frac{2}{3}x1,75+\left(\frac{1}{2}\right)^2:\frac{1}{7}\)
\(B=3,5\)
a \(\frac{a}{3}+\frac{b}{4}=\frac{a+b}{3+4}\Leftrightarrow\frac{4a+3b}{12}=\frac{a+b}{7}\Leftrightarrow28a+21b=12a+12b\)
\(\Leftrightarrow\left(16a+9b\right)+\left(12a+12b\right)=12a+12b\)
\(\Leftrightarrow16a+9b=0\)
Vì \(16a\ge0;9b\ge0\) ( vì a;b là số TN )
=> \(16a+9b\ge0\)
Dấu "=" xảy ra <=> a = b = 0
b) \(\frac{52}{9}=5+\frac{7}{9}=5+\frac{1}{\frac{9}{7}}=5+\frac{1}{1+\frac{2}{7}}=5+\frac{1}{1+\frac{1}{\frac{7}{2}}}=5+\frac{1}{1+\frac{1}{3+\frac{1}{2}}}\)
\(\Rightarrow a=1;b=3;c=2\)
Ta có :
\(\frac{a}{2}=\frac{b}{3};\frac{a}{4}=\frac{c}{9}\)
\(\Rightarrow\frac{a}{4}=\frac{b}{6}=\frac{c}{9}\)
\(\Rightarrow\frac{a^3}{64}=\frac{b^3}{216}=\frac{c^3}{729}\)
Áp dụng c/t tỉ lệ thức = nhau ta có :
\(\frac{a^3}{64}=\frac{b^3}{216}=\frac{c^3}{729}=\frac{a^3+b^3+c^3}{64+216+729}=\frac{-1009}{1009}=-1\)
- \(\frac{a^3}{64}=-1\Rightarrow a^3=-64\Rightarrow a=-4\)
- \(\frac{b^3}{216}=-1\Rightarrow b^3=-216\Rightarrow a=-6\)
- \(\frac{c^3}{729}=-1\Rightarrow c^3=-729\Rightarrow a=-9\)
Vậy a = -4 b = -6 c = -9
Ta chứng minh BĐT sau với các số dương:
\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
Thật vậy, BĐT tương đương: \(\dfrac{x+y}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)
Áp dụng:
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) ; \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\) ; \(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\)
Cộng vế với vế:
\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{c+a}\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\)
b.
Ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Rightarrow\dfrac{3}{a}+\dfrac{3}{b}\ge\dfrac{12}{a+b}\) (1)
\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\Rightarrow\dfrac{2}{b}+\dfrac{2}{c}\ge\dfrac{8}{b+c}\) (2)
\(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\) (3)
Cộng vế với vế (1); (2) và (3):
\(\dfrac{4}{a}+\dfrac{5}{b}+\dfrac{3}{c}\ge4\left(\dfrac{3}{a+b}+\dfrac{2}{b+c}+\dfrac{1}{c+a}\right)\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
Vì \(\frac{a}{b}=\frac{9}{4}\Rightarrow\frac{a}{9}=\frac{b}{4}\) \(\Rightarrow\frac{a}{45}=\frac{b}{20}\)(1)
\(\frac{b}{c}=\frac{5}{3}\Rightarrow\frac{b}{5}=\frac{c}{3}\) \(\Rightarrow\frac{b}{20}=\frac{c}{12}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{45}=\frac{b}{20}=\frac{c}{12}\)
Đặt \(\frac{a}{45}=\frac{b}{20}=\frac{c}{12}\) = \(k\)
\(\Rightarrow a=45k;b=20k;c=12k\)
Thay vào đề bài ta đc:
\(\frac{45k-20k}{20k-12k}=\frac{25k}{8k}=\frac{25}{8}\)
Vậy biểu thức trên \(=\frac{25}{8}.\)
Giải:
Ta có: \(\frac{a}{b}=\frac{9}{4}\Rightarrow\frac{a}{9}=\frac{b}{4}\Rightarrow\frac{a}{45}=\frac{b}{20}\)
\(\frac{b}{c}=\frac{5}{3}\Rightarrow\frac{b}{5}=\frac{c}{3}\Rightarrow\frac{b}{20}=\frac{c}{12}\)
\(\Rightarrow\frac{a}{45}=\frac{b}{20}=\frac{c}{12}\)
Đặt \(\frac{a}{45}=\frac{b}{20}=\frac{c}{12}=k\Rightarrow\left\{\begin{matrix}a=45k\\b=20k\\c=12k\end{matrix}\right.\)
\(\frac{a-b}{b-c}=\frac{45k-20k}{20k-12k}=\frac{25}{8}\)
Vậy \(\frac{a-b}{b-c}=\frac{25}{8}\)