Cho số thực x,y thỏa mãn \(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\). Tính giá trị của
\(P=x^7+y^7+2x^5+2y^5-3x^3-3y^3+4x+4y+100\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\)
Nhân hai vế của pt với \(\left(x-\sqrt{1+y^2}\right)\left(y-\sqrt{1+x^2}\right)\)
\(\Leftrightarrow\left(x+\sqrt{1+y^2}\right)\left(x-\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)\left(y-\sqrt{1+x^2}\right)=\left(x-\sqrt{1+y^2}\right)\left(y-\sqrt{1+x^2}\right)\)
\(\Leftrightarrow\left(x^2-y^2-1\right)\left(y^2-x^2-1\right)=xy-x\sqrt{1+x^2}-y\sqrt{1+y^2}+\sqrt{\left(1+y^2\right)\left(1+x^2\right)}\)
\(\Leftrightarrow\left[-1+\left(x^2-y^2\right)\right]\left[-1-\left(x^2-y^2\right)\right]=2xy+2\sqrt{\left(1+x^2\right)\left(1+y^2\right)}-\left(xy+x\sqrt{1+y^2}+y\sqrt{1+x^2}+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\right)\)
\(\Leftrightarrow1^2-\left(x^2-y^2\right)^2=2xy+2\sqrt{\left(1+x^2\right)\left(1+y^2\right)}-\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)\)
\(\Leftrightarrow1-\left(x^2-y^2\right)^2=2xy+2\sqrt{\left(1+x^2\right)\left(1+y^2\right)}-1\)
\(\Leftrightarrow2\left(1-xy\right)=\left(x^2-y^2\right)^2+2\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)(*)
Mặt khác : \(2\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2\sqrt{x^2+y^2+1+x^2y^2}\)
\(=2\sqrt{x^2+2xy+y^2+x^2y^2-2xy+1}\)
\(=2\sqrt{\left(x+y\right)^2+\left(xy-1\right)^2}\)
Vì \(\left(x^2-y^2\right)^2\ge0\forall x;y\) do đó theo (*) ta có :
\(2\left(1-xy\right)\ge2\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2\sqrt{\left(x+y\right)^2+\left(xy-1\right)^2}\)
\(\Leftrightarrow1-xy\ge\sqrt{\left(x+y\right)^2+\left(xy-1\right)^2}\ge\sqrt{\left(xy-1\right)^2}=\left|xy-1\right|\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2-y^2\right)^2=0\\\left(x+y\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2-y^2=0\\x+y=0\end{matrix}\right.\)\(\Leftrightarrow x=-y\)
Thay vào P ta được :
\(P=x^7-x^7+2x^5-2x^5-3x^3+3x^3+4x-4x+100\)
\(P=0+0-0+0+100\)
\(P=100\)
Vậy...
p/s: mệt...
a: \(\Leftrightarrow\left\{{}\begin{matrix}8x-4y+12-3x+6y-9=48\\9x-12y+9+16x-8y-36=48\end{matrix}\right.\)
=>5x+2y=48-12+9=45 và 25x-20y=48+36-9=48+27=75
=>x=7; y=5
b: \(\Leftrightarrow\left\{{}\begin{matrix}6x+6y-2x+3y=8\\-5x+5y-3x-2y=5\end{matrix}\right.\)
=>4x+9y=8 và -8x+3y=5
=>x=-1/4; y=1
c: \(\Leftrightarrow\left\{{}\begin{matrix}-4x-2+1,5=3y-6-6x\\11,5-12+4x=2y-5+x\end{matrix}\right.\)
=>-4x-0,5=-6x+3y-6 và 4x-0,5=x+2y-5
=>2x-3y=-5,5 và 3x-2y=-4,5
=>x=-1/2; y=3/2
e: \(\Leftrightarrow\left\{{}\begin{matrix}x\cdot2\sqrt{3}-y\sqrt{5}=2\sqrt{3}\cdot\sqrt{2}-\sqrt{5}\cdot\sqrt{3}\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\)
=>\(x=\sqrt{2};y=\sqrt{3}\)
ôi trờiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Từ \(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\)
\(\Rightarrow\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)
(Cách chứng minh tại đây):
Cho (x+\(\sqrt{y^2+1}\))(y+\(\sqrt{x^2+1}\))=1Tìm GTNN của P=2(x2+y2)+x+y - Hoc24
\(\Rightarrow x+y=0\)
Do đó \(P=100\)
x,y thuộc N ôk