Câu 2 : Gía trị lớn nhất của
A=\(\frac{99}{x^2-3x+13}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{99}{x^2-3x+13}=\frac{99}{\left(x^2-2.\frac{3}{2}.x+\frac{9}{4}\right)+\frac{43}{4}}=\frac{99}{\left(x-\frac{3}{2}\right)^2+\frac{43}{4}}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{43}{4}\ge\frac{43}{4}\Rightarrow A=\frac{99}{\left(x-\frac{3}{2}\right)^2+\frac{43}{4}}\le\frac{396}{43}\)
=>\(A_{min}=\frac{396}{43}\Leftrightarrow\left(x-\frac{3}{2}\right)^2=0\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
A=4-x2+3x
=-x2+3x+4
=\(-x^2+3x-\)\(\frac{9}{4}+\frac{25}{4}\)
=\(-\left(x^2-3x+\frac{9}{4}\right)+\frac{25}{4}\)
\(=\frac{25}{4}-\left(x-\frac{3}{2}\right)^2\)
\(\Rightarrow-\left(x-\frac{3}{2}\right)^2\le0\) voi moi x
\(\Rightarrow-\left(x-\frac{3}{2}\right)^2\le\frac{25}{4}\)
Vay GTLN la : \(\frac{25}{4}\)
Dau "=" xay ra khi : \(x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)
A= - ( x^2 - 3x -1)
= - ( x^2 - 3/2x - 3/2x +9/4 - 13/4)
= - [x( x- 3/2) - 3/2 ( x-3/2 ) -13/4]
= - [ ( x-3/2)2 -13/4]
= - (x-3/2)2 +13/4
Mà -(x-3/2)2 < hoặc = 0 nên A< hoặc = 13/4
Vậy A đạt GTLN=13/4 Khi và chỉ khi x= 3/2
Câu b bạn cũng tách ra và làm tương tự vậy thôi nha.
Nếu bạn cứ làm theo phương pháp đó thì mình đảm bảo với bạn mấy bài kiểu đó làm thế nào cũng ra
1, a)
Ta có:
\(x^2+2x+1=\left(x+1\right)^2\)
Thay x=99 vào ta có:
\(\left(99+1\right)^2=100^2=10000\)
b) Ta có:
\(x^3-3x^2+3x-1=\left(x-1\right)^3\)
Thay x=101 vào ta có:
\(\left(101-1\right)^3=100^3=1000000\)
Với \(k\in R\)ta có:
\(P+k=\frac{\left(kx^2-8x+k+6\right)}{\left(x^2+1\right)}\)
Với k = -8 thì:
\(P-8=\frac{\left[-2.\left(2x+1\right)^2\right]}{\left(x^2+1\right)}\le0\)
\(\Rightarrow P\le8\)
\(\Rightarrow Max_P=8\)khi \(x=-\frac{1}{2}\)
\(P+2=\frac{\left[2.\left(x-2\right)^2\right]}{x^2+1}\ge0\)
\(\Rightarrow P\ge2\)
\(\Rightarrow Min_A=-2\)khi \(x=2\)
\(P=\frac{6x-8}{x^2+1}\)
\(\Leftrightarrow Px^2+P=6x-8\)
\(\Leftrightarrow Px^2+P-6x+8=0\)
\(\Leftrightarrow Px^2-6x+\left(P+8\right)=0\)(1)
Để PT (1) có nghiệm \(\Leftrightarrow\left(-6\right)^2-4P\left(P+8\right)\ge0\Leftrightarrow36-4P^2-32P\ge0\)
\(\Leftrightarrow9-P^2-8P\ge0\Leftrightarrow\left(-P-9\right)\left(P-1\right)\ge0\Leftrightarrow-9\le P\le1\)
Vậy P có giá trị nhỏ nhất là - 9 \(\Leftrightarrow-9x^2-6x-1=0\Rightarrow x=-\frac{1}{3}\)\
Vậy P có giá trị lớn nhất là 1 \(x^2-6x+9=0\Rightarrow x=3\)
\(A=\frac{99}{x^2-3x+13}=\frac{99}{x^2-3x+\frac{9}{4}+\frac{43}{4}}=\frac{99}{\left(x-\frac{3}{2}\right)^2+\frac{43}{4}}\)
Ta thấy: \(\left(x-\frac{3}{2}\right)^2\ge0\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{43}{4}\ge\frac{43}{4}\)
\(\Rightarrow\frac{1}{\left(x-\frac{3}{2}\right)^2+\frac{43}{4}}\le\frac{4}{43}\)\(\Rightarrow A\le\frac{396}{43}\)
Dấu "=" xảy ra khi \(\left(x-\frac{3}{2}\right)^2=0\Leftrightarrow x=\frac{3}{2}\)