1. Chứng minh rằng: 2x2 + 3x + 2 > 0 với mọi x
2. Giải phương trình: (x+9)(x+10)(x+11) - 8x = 0
Giúp tớ với nhé. Ngày mai phải nộp rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(2x^2+3x+2=\left(x^2+2x+1\right)+\left(x^2+2\cdot\frac{1}{2}x+\frac{1}{4}\right)+\frac{3}{4}\\ =\left(x+1\right)^2+\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
(vì >3/4 nên >0)
(x2 - 1)(x2 - 5)(x2 - 11) < 0
=> tích có lẻ thừa số nguyên âm
+ Nếu tích có 1 thừa số nguyên âm
Mà x2 - 1 > x2 - 5 > x2 - 11 => x2- 11 là số nguyên âm
=> -4 < x2 < 11
=> x2 thuộc {0; 1; 4; 9} (Vì x2 là số chính phương)
=> x thuộc {0; 1; 2; 3}
+ Nếu tích có 3 thừa số nguyên âm
Xét tương tự
Có : \(2x^2+3x+2\)
\(\Leftrightarrow\) \(\left(x^2+2x+1^2\right)+\left(x^2+x+1^2\right)\)
\(\Leftrightarrow\) \(\left(x^2+2.x.1+1^2\right)\) + \(\left(x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right)\)
\(\Leftrightarrow\) \(\left(x+1\right)^2+\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+1\right)^2\ge0và\left(x+\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow\) \(\left(x+1\right)^2+\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
Vậy \(2x^2+3x+2>0\left(\forall_x\right)\)