Câu 1: (x-2)3 = 27
Câu 2: Cho biết A= 2+22+ 23+24+...+22o11.
So sánh A và 2 2012
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(3^4=3^4;9^3=\left(3^2\right)^3=3^{2\cdot3}=3^6\)
mà \(3^4<3^6\)
nên \(3^4<9^3\)
b: \(A=1+2+2^2+\cdots+2^{2017}\)
=>\(2A=2+2^2+2^3+\cdots+2^{2018}\)
=>\(2A-A=2+2^2+2^3+\cdots+2^{2018}-1-2-2^2-\cdots-2^{2017}\)
=>\(A=2^{2018}-1\)
=>A=B
c: \(16^{19}=\left(2^4\right)^{19}=2^{4\cdot19}=2^{76};8^{25}=\left(2^3\right)^{25}=2^{3\cdot25}=2^{75}\)
mà \(2^{76}<2^{75}\)
nên \(16^{19}<8^{25}\)
d: \(5^{23}=5\cdot5^{22}<6\cdot5^{22}\)
e: \(5^{36}=\left(5^3\right)^{12}=125^{12}\)
\(11^{24}=\left(11^2\right)^{12}=121^{12}\)
mà 125>121
nên \(5^{36}>11^{24}\)
Có : \(S=1+2+2^2+2^3+....+2^{99}\)
\(\Rightarrow2S=2+2^2+2^3+....+2^{100}\)
\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{100}\right)-\left(1+2+2^2+....+2^{99}\right)\)
\(\Rightarrow S=2^{100}-1< 2^{100}\)
Vậy \(S< 2^{100}\)
S=1+2+22+23+....+299
⇒2S=2+22+23+....+2100
⇒2S−S=2100-1
S=2100-1
vì 2100 -1<2100
⇒S<2100
Bài 1
a) S = 1 + 2 + 2² + 2³ + ... + 2²⁰²³
2S = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²⁴
S = 2S - S = (2 + 2² + 2³ + ... + 2²⁰²⁴) - (1 + 2 + 2² + 2³)
= 2²⁰²⁴ - 1
b) B = 2²⁰²⁴
B - 1 = 2²⁰²⁴ - 1 = S
B = S + 1
Vậy B > S
a,
\(S=1+2+2^2+...+2^{2023}\)
\(2S=2+2^2+2^3+...+2^{2024}\)
\(\Rightarrow S=2^{2024}-1\)
b.
Do \(2^{2024}-1< 2^{2024}\)
\(\Rightarrow S< B\)
2.
\(H=3+3^2+...+3^{2022}\)
\(\Rightarrow3H=3^2+3^3+...+3^{2023}\)
\(\Rightarrow3H-H=3^{2023}-3\)
\(\Rightarrow2H=3^{2023}-3\)
\(\Rightarrow H=\dfrac{3^{2023}-3}{2}\)
(x-2)^3 = 27 = 3^3
x - 2 = 3
x = 5
Câu 2:
2A =\(2^2+2^3+...+2^{2012}\)
2A - A = 22012 - 2
VẬy A < 22012