K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2017

a)\(\left(2x+\frac{3}{5}\right)^2-\frac{9}{25}=0\)

\(\Leftrightarrow\left(2x+\frac{3}{5}\right)^2-\left(\frac{3}{5}\right)^2=0\)

\(\Leftrightarrow\left(2x+\frac{3}{5}+\frac{3}{5}\right)\left(2x+\frac{3}{5}-\frac{3}{5}\right)=0\)

\(\Leftrightarrow\left(2x+\frac{6}{5}\right).2x=0\)

\(\Leftrightarrow\left[\begin{matrix}x=-\frac{3}{5}\\x=0\end{matrix}\right.\)

Kết luận thôi

20 tháng 2 2017

b) \(3.\left(3x-\frac{1}{2}\right)^3+\frac{1}{19}=0\)

\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=-\frac{1}{19}:3\)

\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=-\frac{1}{57}\)

\(\Leftrightarrow3x-\frac{1}{2}=\sqrt[3]{-\frac{1}{57}}\)

\(\Leftrightarrow3x=\sqrt[3]{-\frac{1}{57}}+\frac{1}{2}\)

\(\Leftrightarrow x=\frac{\sqrt[3]{-\frac{1}{57}}+\frac{1}{2}}{3}\)

Số hơi to

Kết luận thôi

17 tháng 7 2016

a.

\(\left(x+\frac{1}{2}\right)\times\left(x-\frac{3}{4}\right)=0\)

TH1:

\(x+\frac{1}{2}=0\)

\(x=-\frac{1}{2}\)

TH2:

\(x-\frac{3}{4}=0\)

\(x=\frac{3}{4}\)

Vậy \(x=-\frac{1}{2}\) hoặc \(x=\frac{3}{4}\)

b.

\(\left(\frac{1}{2}x-3\right)\times\left(\frac{2}{3}x+\frac{1}{2}\right)=0\)

TH1:

\(\frac{1}{2}x-3=0\)

\(\frac{1}{2}x=3\)

\(x=3\div\frac{1}{2}\)

\(x=3\times2\)

\(x=6\)

TH2:

\(\frac{2}{3}x+\frac{1}{2}=0\)

\(\frac{2}{3}x=-\frac{1}{2}\)

\(x=-\frac{1}{2}\div\frac{2}{3}\)

\(x=-\frac{1}{2}\times\frac{3}{2}\)

\(x=-\frac{3}{4}\)

Vậy \(x=6\) hoặc \(x=-\frac{3}{4}\)

c.

\(\frac{2}{3}-\frac{1}{3}\times\left(x-\frac{3}{2}\right)-\frac{1}{2}\times\left(2x+1\right)=5\)

\(\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}=5\)

\(\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}x+x\right)=5-\frac{2}{3}\)

\(-\frac{4}{3}x=\frac{13}{3}\)

\(x=\frac{13}{3}\div\left(-\frac{4}{3}\right)\)

\(x=\frac{13}{3}\times\left(-\frac{3}{4}\right)\)

\(x=-\frac{13}{4}\)

d.

\(4x-\left(x+\frac{1}{2}\right)=2x-\left(\frac{1}{2}-5\right)\)

\(4x-x-\frac{1}{2}=2x-\frac{1}{2}+5\)

\(4x-x-2x=\frac{1}{2}-\frac{1}{2}+5\)

\(x=5\)

17 tháng 9 2016

 A=5-3(2x+1)^2

Ta có : (2x+1)^2\(\ge\)0

\(\Rightarrow\)-3(2x-1)^2\(\le\)0

\(\Rightarrow\)5+(-3(2x-1)^2)\(\le\)5

Dấu = xảy ra khi : (2x-1)^2=0

=> 2x-1=0 =>x=\(\frac{1}{2}\)

Vậy : A=5 tại x=\(\frac{1}{2}\)

Ta có : (x-1)^2 \(\ge\)0

=> 2(x-1)^2\(\ge\)0

=>2(x-1)^2+3 \(\ge\)3

=>\(\frac{1}{2\left(x-1\right)^2+3}\)\(\le\)\(\frac{1}{3}\)

Dấu = xảy ra khi : (x-1)^2 =0

=> x = 1

Vậy : B = \(\frac{1}{3}\)khi x = 1

\(\frac{x^2+8}{x^2+2}\)\(\frac{x^2+2+6}{x^2+2}=1+\frac{6}{x^2+2}\)

Làm như câu B                   GTNN = 4 khi x =0 

k vs nha

18 tháng 7 2016

a) \(\frac{2}{3}-\frac{1}{3}\left(x-\frac{3}{2}\right)-\frac{1}{2}\left(2x+1\right)=5\)\(5\)

=> \(\frac{2}{3}-\left(\frac{1}{3}x-\frac{1}{2}\right)-\left(x+\frac{1}{2}\right)=5\)

=>\(\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}=5\)

=>\(\left(\frac{2}{3}+\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}x+x\right)=5\)

=>\(\frac{2}{3}-\frac{4}{3}x=5\)

=>\(\frac{4}{3}x=\frac{2}{3}-5=-\frac{13}{3}\)

=>\(x=-\frac{13}{3}:\frac{4}{3}=-\frac{13}{4}\)

b)\(4x-\left(x+\frac{1}{2}\right)=2x-\left(\frac{1}{2}-5\right)\)

=>\(4x-x-\frac{1}{2}=2x-\left(-\frac{9}{2}\right)\)

=> \(3x-\frac{1}{2}=2x-\left(-\frac{9}{2}\right)\)

=>\(x=-\left(-\frac{9}{2}\right)+\frac{1}{2}=5\)

30 tháng 7 2018

\(\left(x+\frac{1}{2}\right)\left(x-\frac{3}{4}\right)=0\)

\(\Rightarrow\hept{\begin{cases}x+\frac{1}{2}=0\\x-\frac{3}{4}=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\x=\frac{3}{4}\end{cases}}\)

30 tháng 7 2018

\(\left(x+\frac{1}{2}\right).\left(x-\frac{3}{4}\right)=0\)

\(x+\frac{1}{2}=0\)hoặc \(x-\frac{3}{4}=0\)

\(\Leftrightarrow x=-\frac{1}{2}\)hoặc \(x=\frac{3}{4}\)

20 tháng 9 2020

a) \(\left|2x-1\right|+\frac{1}{3}=0\)

\(\Leftrightarrow\left|2x-1\right|=-\frac{1}{3}\)

=> vô lý

=> PT vô nghiệm

b) \(\left|x+2\right|+\left|x-3\right|=0\)

\(\Leftrightarrow\left|x+2\right|=-\left|x-3\right|\)

Vì \(\hept{\begin{cases}\left|x+2\right|\ge0\\-\left|x-3\right|\le0\end{cases}\left(\forall x\right)}\) nên dấu "=" xảy ra khi: 

\(\left|x+2\right|=-\left|x-3\right|=0\Rightarrow\hept{\begin{cases}x=-2\\x=3\end{cases}}\) (vô lý)

=> PT vô nghiệm

6 tháng 7 2018

a )  

Ta có : 

\(\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}\\\frac{y}{8}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{20}=\frac{y}{24}\\\frac{y}{24}=\frac{z}{21}\end{cases}}}\)

và \(x+y-z=69\)

ADTCDTSBN , ta có : 

\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{20}=3\\\frac{y}{24}=3\\\frac{z}{21}=3\end{cases}\Rightarrow\hept{\begin{cases}x=3.20=60\\y=3.24=72\\z=3.21=63\end{cases}}}\)

Vậy ...

b )  

Ta có : 

\(5y=72\Rightarrow y=\frac{72}{5}=14,4\)

\(\Rightarrow x=14,4.3:2=21,6\)

và \(3x+5y-7z=30\)

Thay vào làm tiếp : 

c ) 

\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)

\(=\frac{3\left(x-1\right)}{6}=\frac{4\left(y+3\right)}{16}=\frac{5\left(z-5\right)}{30}\)

\(=\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)

\(=\frac{5z-25-\left(3x-3\right)-\left(4y+12\right)}{30-6-16}\)( ADTCDTSBN ) 

\(=\frac{5z-25-3x+3-4y-12}{8}=\frac{5z-3x-4y-34}{8}\)

\(=\frac{50-34}{8}=\frac{16}{8}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{x-1}{2}=2\\\frac{y+3}{4}=2\\\frac{z-5}{6}=2\end{cases}\Rightarrow\hept{\begin{cases}x-1=2.2=4\\y+3=2.4=8\\z-5=2.6=12\end{cases}\Rightarrow}\hept{\begin{cases}x=5\\y=5\\z=17\end{cases}}}\)

Vậy ...

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405