Cho biểu thức B=\(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-ac-bc}\) . Với a, b, c là các số khác nhau thỏa mãn a+b+c=2016 thì giá trị của biểu thức B là:
Cần gấp đáp án nha mấy bạn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chào bạn còn nhớ mình ko bai nay o vong 15 luyen thi phai ko. Bạn phân tích từ số thành nhân tử
B=(a+b+c)(a^2 + b^2 + c^2 -ab-bc-ac)/a^2 +b^2 +c^2 -ab-bc-ac
suy ra B=a+b+c. suy ra B=2016
Theo baì ra , ta có :
\(R=\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-ac-bc}\)
\(\Leftrightarrow R=\frac{a^3+b^3+3ab\left(a+b\right)+c^3-3ab\left(a+b\right)-3abc}{a^2+b^2+c^2-ab-ac-bc}\)
\(\Leftrightarrow R=\frac{\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)}{a^2+b^2+c^2-ab-ac-bc}\)
\(\Leftrightarrow R=\frac{\left(a+b+c\right)\left(\left(a+b\right)^2-\left(a+b\right)c+c^2\right)-3ab\left(a+b+c\right)}{a^2+b^2+c^2-ab-ac-bc}\)
\(\Leftrightarrow R=\frac{\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)}{a^2+b^2+c^2-ab-ac-bc}\)
\(\Leftrightarrow R=\frac{\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)}{a^2+b^2+c^2-ab-ac-bc}\)
\(\Leftrightarrow R=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc-ab\right)}{a^2+b^2+c^2-ab-ac-bc}\)
\(\Leftrightarrow R=a+b+c=2016\)
Vậy R = 2016
Chúc bạn hok tốt =))
Phan Cả Phát Xin hết !!!
Tham khảo: Câu hỏi của Nguyễn Thị Nhàn - Toán lớp 8 - Học toán với OnlineMath
Học tốt=)
tth : mẫu nó khác bạn nhé
- mẫu nó là 2bc 2ac 2ab
mẫu mk ko có nhân 2
\(A=\frac{a^3}{abc}+\frac{b^3}{abc}+\frac{c^3}{abc}=\left(a^3+b^3+c^3\right)\frac{1}{abc}\)
Cm với a+b+c=0 thì \(a^3+b^3+c^3=3abc\)(1) .Từ đó tính dc A, muốn cm(1) bạn xét hiệu nhé
\(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)(luôn đúng vì a+b+c=0)
Từ \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\) suy ra \(\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)
\(\Rightarrow\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}\\\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\\\frac{1}{c}+\frac{1}{a}=\frac{1}{a}+\frac{1}{b}\end{cases}}\)\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)
Khi đó \(M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)
\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)=9\Rightarrow-3\le a+b+c\le3\)
\(S=a+b+c+\dfrac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2}=\dfrac{1}{2}\left(a+b+c\right)^2+a+b+c-\dfrac{3}{2}\)
Đặt \(a+b+c=x\Rightarrow-3\le x\le3\)
\(S=\dfrac{1}{2}x^2+x-\dfrac{3}{2}=\dfrac{1}{2}\left(x+1\right)^2-2\ge-2\)
\(S_{min}=-2\) khi \(\left\{{}\begin{matrix}a+b+c=-1\\a^2+b^2+c^2=3\end{matrix}\right.\) (có vô số bộ a;b;c thỏa mãn)
\(S=\dfrac{1}{2}\left(x^2+2x-15\right)+6=\dfrac{1}{2}\left(x-3\right)\left(x+5\right)+6\le6\)
\(S_{max}=6\) khi \(x=3\) hay \(a=b=c=1\)
2016
Cách giải trên violympic nè :
a+b+c=2016
=> a=1 ;b=2 ;c=2013 . Thế ba số a,b,c vào biểu thức => B=2016