Số tự nhiên a chia cho b được 6. Vậy a chia cho 3b được kết quả là
1/2
2
18
không chia hết
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) a chia hết cho 2 nhưng ko chia hết cho 4
b) b chia hết cho 3,4 nhưng ko chia hết cho 18
a) Chia hết cho 2
ko chia hết cho 4
b)
Chia hết cho 3, 4, 18
1. a chia het cho 20 va 12 suy ra a chia het cho 2;3;4;5.
vi 2
2 . 3 =6; 2 .4 =8
suy ra a chia 20 ko the du 8
a chia 12 ko the du 6
2.
=4a - 4b + 7b
=4 . [a - b] + 7b
a - b chia het cho 7 ; 7b chia het cho 7 suy ra 4a + 3b chia het cho 7
3.
a 3n - 3 + chia het n -1
3[n - 1] + 7 chia het n - 1
vi 3[n - 1]chia het chgo 7 suy ra 7 chia het n -1
vay n = 8
1)a)
gọi 3 số đó là a;a+1:a+2
ta có: a+(a+1)+(a+2)=3a+3
mà 3 chia hết cho 3 nên 3a+3 chia hết cho3
b) goij4 số đó là a;a+1;a+2;a+3;a+4
ta có tổng sẽ là: 4a+10
mà 10 ko chia hết cho 4 nên tổng 4 số trên ko chia hết cho 4
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
Dùng phương pháp thử :
Giả sử a là 18 , b là 3
=> a : b = 18 : 3 = 6
\(\rightarrow\) a : 3b = 18 : 3*3 = 18 : 9 = 2
Vậy a chia cho 3b được kết quả là 2.
\(a:b=6\) \(< =>a:3b=a:3:b=6:3=2\)