K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2017

Ví dụ 3: Giải phương trình : (4).

Giải: Ta có phương trình:

, phương trình này có nghiệm: .

Do vậy

,

.

17 tháng 2 2017

a) Ta có :\(2x^4-x^3-9x^2+13x-5=0=>\left(x-1\right)^3\left(2x+5\right)=0\)

=>\(\left\{\begin{matrix}\left(x-1\right)^3=0\\2x+5=0\end{matrix}\right.=>\left\{\begin{matrix}x-1=0\\2x=-5\end{matrix}\right.=>\left\{\begin{matrix}x=1\\x=-2,5\end{matrix}\right.\)

Vậy tập nghiệm của phương trình S={-2,5 ;1}

b)\(x^4-2x^3-11x^2+12x+36=0=>\left(x-3\right)^2\left(x+2\right)^2=0\)

=>\(\left\{\begin{matrix}\left(x-3\right)^2=0=>x-3=0=>x=3\\\left(x+2\right)^2=0=>x+2=0=>x=-2\end{matrix}\right.\)

Vậy tập nghiệm của pt là S={-2;3}

13 tháng 1 2017

e: =>x(x^3-4x^2-8x+8)=0

=>x[(x^3+8)-4x(x+2)]=0

=>x(x+2)(x^2-2x+4-4x)=0

=>x(x+2)(x^2-6x+4)=0

=>\(x\in\left\{0;-2;3+\sqrt{5};3-\sqrt{5}\right\}\)

g: =>2x^4+5x^3-6x^3-15x^2+6x^2+15x-2x-5=0

=>(2x+5)(x^3-3x^2+3x-1)=0

=>(2x+5)(x-1)^3=0

=>x=1 hoặc x=-5/2

h: =>(x^2+8x+7)(x^2+8x+15)+15=0

=>(x^2+8x)^2+22(x^2+8x)+120=0

=>(x^2+8x+10)(x^2+8x+12)=0

=>(x^2+8x+10)(x+2)(x+6)=0

=>\(x\in\left\{-2;-6;-4+\sqrt{6};-4-\sqrt{6}\right\}\)

31 tháng 1 2019

a) Đa thức thương  x 2  – 6x + 9.

b) Đa thức thương 2 x 2  – 5.

c) Đa thức thương  x 2  + 4x + 3 và đa thức dư -12.

d) Đa thức x + 5 và đa thức dư x – 4.

18 tháng 2 2022

a, \(\Leftrightarrow\left(9x^2-4\right)\left(x+1\right)-\left(3x+2\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(\left(9x^2-4\right)-\left(\left(3x+2\right)\left(x-1\right)\right)\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(9x^2-4-\left(3x^2-x-2\right)\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(9x^2-4-3x^2+x+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x^2+x-2\right)=0\)

\(\Leftrightarrow\left(x+1\right)=0;3x^2+x-2=0\)

=> x=-1  

với \(3x^2+x-2=0\)

ta sử dụng công thức bậc 2 suy ra : \(x=\dfrac{2}{3};x=-1\)

Vậy  ghiệm của pt trên \(S\in\left\{-1;\dfrac{2}{3}\right\}\)

b: \(\Leftrightarrow x^2-2x+1-1+x^2=x+3-x^2-3x\)

\(\Leftrightarrow2x^2-2x=-x^2-2x+3\)

\(\Leftrightarrow3x^2=3\)

hay \(x\in\left\{1;-1\right\}\)

c: \(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x-3\right)-\left(x-1\right)\left(x-2\right)\left(x+2\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+1\right)\left(x-3\right)-\left(x-2\right)\left(x+5\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-2x-3-x^2-3x+10\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(-5x+7\right)=0\)

hay \(x\in\left\{1;-2;\dfrac{7}{5}\right\}\)

24 tháng 12 2019

+Trước tiên từ đồ thị hàm số y= 2x3- 9x2+12x , ta suy ra đồ thị hàm số  y= 2 x 3   -   9 x 2   +   12 x  như hình dưới đây:

+ Phương trình 2 x 3   -   9 x 2   +   12 x   +   m   =   0  và đường thẳng y= -m

+ Dựa vào đồ thị hàm số   y = 2 x 3   -   9 x 2   +   12 x , yêu cầu bài toán trở thành:

4< -m< 5 hay -5<m< -4.

Chọn B.

d: Ta có: \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)

\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)

\(\Leftrightarrow x\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

7 tháng 7 2019

Cả ba phương trình trên đều là phương trình trùng phương.

a)  3 x 4   –   12 x 2   +   9   =   0   ( 1 )

Đặt x 2   =   t ,  t ≥ 0.

(1) trở thành:  3 t 2   –   12 t   +   9   =   0   ( 2 )

Giải (2):

Có a = 3; b = -12; c = 9

⇒ a + b + c = 0

⇒ (2) có hai nghiệm  t 1   =   1   v à   t 2   =   3 .

Cả hai nghiệm đều thỏa mãn điều kiện.

+ t = 3 ⇒ x 2 = 3 ⇒ x = ± 3 + t = 1 ⇒ x 2 = 1 ⇒ x = ± 1

Vậy phương trình có tập nghiệm Giải bài 56 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

b)  2 x 4   +   3 x 2   –   2   =   0   ( 1 )

Đặt x 2   =   t , t ≥ 0.

(1) trở thành:    2 t 2   +   3 t   –   2   =   0   ( 2 )

Giải (2) :

Có a = 2 ; b = 3 ; c = -2

⇒   Δ   =   3 2   –   4 . 2 . ( - 2 )   =   25   >   0

⇒ (2) có hai nghiệm

Giải bài 56 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

t 1   =   - 2   <   0  nên loại.

Giải bài 56 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có tập nghiệm Giải bài 56 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

c)  x 4   +   5 x 2   +   1   =   0   ( 1 )

Đặt  x 2   =   t ,   t   >   0 .

(1) trở thành:  t 2   +   5 t   +   1   =   0   ( 2 )

Giải (2):

Có a = 1; b = 5; c = 1

⇒   Δ   =   5 2   –   4 . 1 . 1   =   21   >   0

⇒ Phương trình có hai nghiệm:

Giải bài 56 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

Cả hai nghiệm đều < 0 nên không thỏa mãn điều kiện.

Vậy phương trình (1) vô nghiệm.

19 tháng 9 2018

NV
9 tháng 5 2021

Đặt \(f\left(x\right)=2x^3-9x^2+12x-2-m\)

\(f\left(x\right)\) là hàm đa thức nên liên tục trên R

 \(\forall m\in\left(2;3\right)\) ta có:

\(f\left(0\right)=-2-m< 0\)

\(f\left(1\right)=3-m>0\)

\(\Rightarrow f\left(0\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;1\right)\) (1)

\(f\left(2\right)=2-m< 0\)

\(\Rightarrow f\left(1\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\)  luôn có ít nhất 1 nghiệm thuộc \(\left(1;2\right)\) (2)

\(f\left(3\right)=7-m>0\)

\(\Rightarrow f\left(2\right).f\left(3\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(2;3\right)\) (3)

Từ (1); (2); (3) \(\Rightarrow f\left(x\right)\) luôn có 3 nghiệm dương pb