K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2015

Áp dụng hằng đẳng thức \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\) với \(a=x,b=-y,c=-z\) ta được \(x^3-y^3-z^3-3xyz=\left(x-y-z\right)\left(x^2+y^2+z^2+xy-yz+zx\right)\) Thành thử \(x=y+z\)  hoặc \(x^2+y^2+z^2+xy-yz+zx=0.\) Vì \(x,y,z\)  là các số nguyên dương nên \(x^2+y^2+z^2+xy-yz+zx>x^2+z^2-xz\ge xz>0.\) Suy ra \(x=y+z\). Vì \(x^2=2\left(y+z\right)\to x^2=2x\to x=2\to y+z=2\to y=z=1.\)  (Vì các số \(x,y,z\) nguyên dương).

Vậy \(\left(x,y,z\right)=\left(2,1,1\right).\) 

22 tháng 4 2019

M = x 3 + y 3 + z 3 - 3 x y z x 2 + y 2 + z 2 - x y - y z - x z

16 tháng 2 2017

Ta có:  x 3 + y 3 = ( x + y ) 2 < = > ( x + y ) ( x 2 − x y + y 2 − x − y ) = 0

Vì x, y nguyên dương nên x+y > 0, ta có:  x 2 − x y + y 2 − x − y = 0

⇔ 2 ( x 2 − x y + y 2 − x − y ) = 0 ⇔ x - y 2 + x - 1 2 + ( y - 1 ) 2 = 2

Vì x, y nguyên nên có 3 trường hợp:

+ Trường hợp 1:  x − y = 0 x - 1 2 = 1 ⇔ x = y = 2 , z = 4 y - 1 2 = 1

+ Trường hợp 2:  x − 1 = 0 x - y 2 = 1 ⇔ x = 1 , y = 2 , z = 3 y - 1 2 = 1

+ Trường hợp 3:  y − 1 = 0 x - y 2 = 1 x - 1 2 = 1 ⇔ x = 2 , y = 1 , z = 3

Vậy hệ có 3 nghiệm (1,2,3);(2,1,3);(2,2,4)

6 tháng 9 2019

Cách 1

Giải bài 17 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất Giải bài 17 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 17 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất Giải bài 17 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 17 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất Giải bài 17 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9

Cách 2

Giải bài 17 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9 

Giải bài 17 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 17 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9 

Giải bài 17 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 17 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9 

Giải bài 17 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9

Kiến thức áp dụng

Giải hệ phương trình  ta làm như sau:

Bước 1: Bước 1: Từ một phương trình (coi là phương trình thứ nhất), ta biểu diễn x theo y (hoặc y theo x) ta được phương trình (*). Sau đó, ta thế (*) vào phương trình thứ hai để được một phương trình mới ( chỉ còn một ẩn).

Bước 2: Dùng phương trình mới ấy thay thế cho phương trình thứ hai, phương trình (*) thay thế cho phương trình thứ nhất của hệ ta được hệ phương trình mới tương đương .

Bước 3: Giải hệ phương trình mới ta tìm được nghiệm của hệ phương trình.

10 tháng 12 2018

Đáp án D

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

4 tháng 5 2017

Đáp án D

23 tháng 1 2017

Ta có

x 2 − y 3 = 1 x + y 3 = 2 ⇔ x 2 − y 3 = 1 x 2 + y 6 = 2 ⇔ x 2 − y 3 = 1 6 + 3 y = 1 ⇔ x 2 − y 3 = 1 y = 1 6 + 3 ⇔ y = 6 − 3 3 x 2 − 3 . 6 − 3 3 = 1 ⇔ y = 6 − 3 3 x = 1

Vậy hệ đã cho có nghiệm duy nhất ( x ;   y )   = 1 ; 6 − 3 3  

Đáp án: D

23 tháng 11 2019

Cách 1

Giải bài 17 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất Giải bài 17 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9

Cách 2