Giải phương trình:
\(x+\sqrt{17-x^2}+x\sqrt{17-x^2}=9\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đk:\(-\sqrt{17}\le x\le\sqrt{17}\)
Đặt \(t=x+\sqrt{17-x^2}\left(t>0\right)\)
\(\Rightarrow t^2=17+2x\sqrt{17-x^2}\)
\(\Rightarrow x\sqrt{17-x^2}=\frac{t^2-17}{2}\)
thay vào pt
\(t+\frac{t^2-17}{2}=9\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}t=-7\left(loai\right)\\t=5\left(tm\right)\end{array}\right.\)
\(\Rightarrow x+\sqrt{17-x^2}=5\)
\(\Leftrightarrow\sqrt{17-x^2}=5-x\)
Với \(x< \sqrt{17}\) bình 2 vế ta có:
\(17-x^2=x^2-10x+25\)
\(\Leftrightarrow2x^2-10x+8=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=4\end{cases}\left(tm\right)}\)
dòng cuối là \(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=4\end{array}\right.\)(thỏa mãn)
a.\(2\sqrt{12x}-3\sqrt{3x}+4\sqrt{48x}=17\)
=>\(4\sqrt{3x}-3\sqrt{3x}+16\sqrt{3x}=17\)
=>\(17\sqrt{3x}=17\)
=>\(\sqrt{3x}=1\)
=>\(x=\dfrac{1}{3}\)
sorry mih ghi nhầm bn ạ mà chẳng wan trọng lắm đâu bn cứ tập trung mà giải hộ mình cái phương trình ấy
ĐKXĐ: ....
Đặt \(x+\sqrt{17-x^2}=a\ge-\sqrt{17}\Rightarrow x\sqrt{17-x^2}=\frac{a^2-17}{2}\)
Phương trình trở thành:
\(a+\frac{a^2-17}{2}=9\Leftrightarrow a^2+2a-35=0\Rightarrow\left[{}\begin{matrix}a=5\\a=-7\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x+\sqrt{17-x^2}=5\)
\(\Leftrightarrow\sqrt{17-x^2}=5-x\)
\(\Leftrightarrow17-x^2=x^2-10x+25\)
\(\Leftrightarrow2x^2-10x+8=0\Rightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)
Lời giải:
ĐKXĐ:......
Ta có: Đặt \(y=\sqrt{17-x^2}\Rightarrow x^2+y^2=17\)
Ta chuyển phương trình về hệ phương trình:
\(\left\{\begin{matrix} x+y+xy=9\\ x^2+y^2=17\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} xy=9-(x+y)\\ (x+y)^2-2xy=17\end{matrix}\right.\)
\(\Rightarrow (x+y)^2-2[9-(x+y)]=17\)
\(\Leftrightarrow (x+y)^2+2(x+y)-35=0\)
\(\Leftrightarrow (x+y-5)(x+y+7)=0\)
Nếu \(x+y=5\Rightarrow xy=9-5=4\)
Theo định lý Viete đảo thì $x,y$ là nghiệm của PT: \(X^2-5X+4=0\)
\(\Rightarrow (x,y)=(1,4)\Leftrightarrow (x,\sqrt{17-x^2})=(1,4)\)
\(\Rightarrow x=1\)
Nếu \(x+y=-7\Rightarrow xy=9-(-7)=16\)
Vì \(x+y<0; y\geq 0\Rightarrow x< 0\Rightarrow xy\leq 0\Leftrightarrow 16\leq 0\) (vô lý nên loại)
Vậy \(x=1\)
a) đk: \(1\le x\le5\)
\(\sqrt[4]{5-x}+\sqrt[4]{x-1}=\sqrt{2}\)
<=> \(\left(\sqrt[4]{5-x}+\sqrt[4]{x-1}\right)^4=\sqrt{2}^4\)
<=> \(5-x+x-1+4\sqrt[4]{5-x}^3.\sqrt[4]{x-1}+6\sqrt[4]{5-x}^2.\sqrt[4]{x-1}^2+4\sqrt[4]{5-x}.\sqrt[4]{x-1}^3=4\)
<=> \(\sqrt[4]{\left(5-x\right)\left(x-1\right)}.\left(2\sqrt[4]{5-x}^2+3\sqrt[4]{5-x}.\sqrt[4]{x-1}+2\sqrt[4]{x-1}^2\right)=0\)
<=> \(\left[{}\begin{matrix}\sqrt[4]{\left(5-x\right)\left(x-1\right)}=0\left(2\right)\\2\sqrt[4]{5-x}^2+3\sqrt[4]{\left(5-x\right)\left(x-1\right)}+2\sqrt[4]{x-1}^2=0\left(1\right)\end{matrix}\right.\)
Giải (2) <=> \(\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\left(tm\right)\)
Giải (1) : Đặt \(\sqrt[4]{5-x}=a;\sqrt[4]{x-1}=b\)(đk : a, b \(\ge\)0)
Khi đó, ta có: \(2a^2+3ab+2b^2=0\)
<=> 2(a2 + 3/2ab + 9/16b2) + \(\dfrac{7}{8}b^2=0\)
<=> \(2\left(a+\dfrac{3}{4}b\right)^2+\dfrac{7}{8}b^2=0\)
<=> \(\left\{{}\begin{matrix}a+\dfrac{3}{4}b=0\\b=0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}a=0\\b=0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}\sqrt[4]{x-1}=0\\\sqrt[4]{5-x}=0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)(vô lí)
sao cách này rắc rối quá vậy , có cách nào đơn giản hơn không? mà pt này rõ ràng có nghiệm chứ có phải vô nghiệm đâu
b, ĐK \(x\ge-4\)
PT
<=> \(\left(x-\sqrt{x+4}\right)+\left(\sqrt{2x^2-10x+17}-2x+3\right)=0\)
<=> \(\frac{x^2-x-4}{x+\sqrt{x+4}}+\frac{-2x^2+2x+8}{\sqrt{2x^2-10x+17}+2x-3}=0\)với \(x+\sqrt{x+4}\ne0\)
<=> \(\frac{x^2-x-4}{x+\sqrt{x+4}}-\frac{2\left(x^2-x-4\right)}{\sqrt{2x^2-10x+17}+2x-3}=0\)
<=> \(\orbr{\begin{cases}x^2-x-4=0\\\frac{1}{x+\sqrt{x+4}}-\frac{2}{\sqrt{2x^2-10x+17}+2x-3}=0\left(2\right)\end{cases}}\)
Giải (2)
=> \(2x+2\sqrt{x+4}=2x-3+\sqrt{2x^2-10x+17}\)
<=> \(\sqrt{2x^2-10x+17}=2\sqrt{x+4}+3\)
<=> \(2x^2-10x+17=4\left(x+4\right)+9+12\sqrt{x+4}\)
<=> \(x^2-7x-4=6\sqrt{x+4}\)
<=> \(\left(x-6\right)^2+5x-40=6\sqrt{6\left(x-6\right)-5x+40}\)
Đặt x-6=a;\(\sqrt{6\left(x-6\right)-5x+40}=b\)
=> \(\hept{\begin{cases}a^2+5x-40=6b\\b^2+5x-40=6a\end{cases}}\)
=> \(a^2-b^2+6\left(a-b\right)=0\)
<=> \(\orbr{\begin{cases}a=b\\a+b+6=0\end{cases}}\)
+ a=b
=> \(x-6=\sqrt{x+4}\)
=> \(\hept{\begin{cases}x\ge6\\x^2-13x+32=0\end{cases}}\)=> \(x=\frac{13+\sqrt{41}}{2}\)
+ a+b+6=0
=> \(x+\sqrt{x+4}=0\)(loại)
Vậy \(S=\left\{\frac{13+\sqrt{41}}{2};\frac{1+\sqrt{17}}{2}\right\}\)
a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow x+5=4\)
hay x=-1
b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}=17\)
\(\Leftrightarrow x-1=289\)
hay x=290
x có khác -1 đâu mà chia cho x+1
\(x+\sqrt{17-x^2}+\sqrt{17-x^2}=9\)ĐK : \(-\sqrt{17}\le x\le\sqrt{17}\)
\(\Leftrightarrow x+\left(x+1\right)\sqrt{17-x^2}=9\)
\(\Leftrightarrow\left(x+1\right)\sqrt{17-x^2}=9-x\Leftrightarrow\sqrt{17-x^2}=\frac{9-x}{x+1}\)
\(\Leftrightarrow17-x^2=\frac{x^2-6x+9}{x^2+2x+1}\Leftrightarrow\left(17-x^2\right)\left(x^2+2x+1\right)=x^2-6x+9\)
\(\Leftrightarrow17x^2+34x+17-x^4-2x^3-x^2=x^2-6x+9\)
\(\Leftrightarrow-x^4-2x^3+15x^2+40x+8=0\)
\(\Leftrightarrow x=4,1...\left(tm\right);x=-0,21\left(tm\right);x=\frac{-1-2\sqrt{6}}{2}\pm0,44\left(tm\right)\)