Có thể có phân số \(\frac{a}{b}\)( \(a,b\in Z,b\ne0\))
\(\frac{a}{b}=\frac{am}{bn}\left(m,n\in Z,m,n\ne0,m\ne n\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{a}{b}< 1\\ \Rightarrow a< b\\ \Rightarrow am< bm\left(m\in N^{\cdot}\right)\\ \Rightarrow am+ab< bm+ab\\\Rightarrow a\left(b+m\right)< b\left(a+m\right)\\ \Rightarrow\frac{a}{b} < \frac{a+m}{b+m}\)
Theo đề ta có :
\(x=\frac{a}{m}\) \(;\)\(y=\frac{b}{m}\)
mà \(x< y\) \(\Rightarrow\frac{a}{m}< \frac{b}{m}\Rightarrow a< b\)
Có : \(x=\frac{a}{m}\Rightarrow x=\frac{2a}{2m}=\frac{a+a}{2m}\) ; \(z=\frac{a+b}{2m}\) và \(y=\frac{b}{m}\Rightarrow y=\frac{2b}{2m}=\frac{b+b}{2m}\)
* Vì a < b \(\Rightarrow\) a+a < a+b \(\Rightarrow\frac{a+a}{2m}< \frac{a+b}{2m}\)\(\Rightarrow x< z\) \(\left(1\right)\)
* Vì \(a< b\)\(\Rightarrow a+b< b+b\Rightarrow\frac{a+b}{2m}< \frac{b+b}{2m}\Rightarrow z< y\)\(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) nên ta có :
\(\frac{a+a}{2m}< \frac{a+b}{2m}< \frac{b+b}{2m}\Rightarrow x< z< y\) \(\left(đpcm\right)\)
Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=ak\\y=bk\\z=ck\end{matrix}\right.\)
Ta có: \(H=\frac{xyz\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(=\frac{ak\cdot bk\cdot ck\cdot\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc\cdot\left(ak+bk\right)\cdot\left(bk+ck\right)\cdot\left(ck+ak\right)}\)
\(=\frac{k^3\cdot abc\cdot\left(a+b\right)\left(b+c\right)\left(c+a\right)}{k^3\cdot abc\cdot\left(a+b\right)\left(b+c\right)\left(c+a\right)}=1\)
Vậy: H=1
đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Leftrightarrow\left\{{}\begin{matrix}x=ak\\y=bk\\z=ck\end{matrix}\right.\)
theo giả thiết ta có \(H=\frac{xyz\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
thay \(H=\frac{ak.bk.ck\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc\left(ak+bk\right)\left(bk+ck\right)\left(ck+ak\right)}\)
\(\Leftrightarrow H=\frac{k^3abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc\left[k\left(a+b\right)\right]\left[k\left(b+c\right)\right]\left[k\left(c+a\right)\right]}\)
\(\Leftrightarrow H=\frac{k^3abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc.k\left(a+b\right).k\left(b+c\right).k\left(c+a\right)}\)
\(\Leftrightarrow H=\frac{k^3abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}{k^3abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}=1\)
Vậy H = 1
Không. Vì không có phân số nào mà cả tử số và mẫu số nhân với hai số khác nhau lại bằng phân số đã cho cả (hay do m khác n)