giúp mình giải chi tiết nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 18
a, Với \(a>0;a\ne1;4\)
\(A=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
\(=\left(\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\)
\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)
b, Thay a = 9 => căn a = 3
\(A=\dfrac{3-2}{3.3}=\dfrac{1}{9}\)
c, Ta có : \(A.B=\dfrac{\sqrt{a}-2}{3\sqrt{a}}.\dfrac{3\sqrt{a}}{\sqrt{a}+1}=\dfrac{\sqrt{a}-2}{\sqrt{a}+1}< 0\)
Vì \(\sqrt{a}+1>\sqrt{a}-2\)
\(\left\{{}\begin{matrix}\sqrt{a}+1>0\\\sqrt{a}-2< 0\end{matrix}\right.\Leftrightarrow a< 4\)
Kết hợp với đk vậy \(0< a< 4;a\ne1\)
Bài 18:
1) Ta có: \(A=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)
\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{3}\)
\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)
2) Thay a=9 vào B, ta được:
\(B=\dfrac{3\cdot3}{3+1}=\dfrac{9}{4}\)
a, \(A=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)ĐK : \(x>0;x\ne1\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
b, \(A=\dfrac{1}{3}\Rightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}}=\dfrac{1}{3}\Rightarrow3\sqrt{x}-3=\sqrt{x}\Leftrightarrow2\sqrt{x}=3\)
\(\Leftrightarrow\sqrt{x}=\dfrac{3}{2}\Leftrightarrow x=\dfrac{9}{4}\)
c, \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}}-9\sqrt{x}=\dfrac{\sqrt{x}-1-9x}{\sqrt{x}}\)
\(=1-\dfrac{1}{\sqrt{x}}-9\sqrt{x}\)Đặt \(\sqrt{x}=t^2\left(t>0\right)\)
\(1-t-9t^2=-\left(9t^2-t-1\right)=-\left(9t^2-2.3.\dfrac{1}{6}.t+\dfrac{1}{36}-\dfrac{37}{36}\right)\)
\(=-\left(3t-\dfrac{1}{6}\right)+\dfrac{37}{36}\le\dfrac{37}{36}\)
Dấu ''='' xảy ra khi t = 1/18 => t^2 = 1/324 => \(\sqrt{x}=\dfrac{1}{324}\Rightarrow x=\dfrac{1}{104876}\)
Vậy GTLN P là 37/36 khi x = 1/104876
d. \(\dfrac{x-2}{x-1}=\dfrac{x+4}{x+7}\)
\(\Rightarrow\left(x-2\right)\left(x+7\right)=\left(x-1\right)\left(x+4\right)\)
\(\Rightarrow x^2+5x-14=x^2+3x-4\)
\(\Rightarrow x^2+5x-x^2-3x=-4+14\)
\(\Rightarrow2x=10\) \(\Rightarrow x=\dfrac{10}{3}\) \(\Rightarrow x=5\)
\(\dfrac{x-2}{x-1}=\dfrac{x+4}{x+7}\)
⇔ \(\dfrac{\left(x-2\right)\left(x+7\right)}{\left(x-1\right)\left(x+7\right)}=\dfrac{\left(x+4\right)\left(x-1\right)}{\left(x+7\right)\left(x-1\right)}\)
⇔ (x - 2)(x + 7) = (x + 4)(x - 1)
⇔ x2 + 7x - 2x - 14 = x2 - x + 4x - 4
⇔ x2 - x2 + 7x - 2x + x - 4x = 14 - 4
⇔ 2x = 10
⇔ x = 10/2 = 5
\(\dfrac{\sqrt{3}-3}{\sqrt{3}+1}=\dfrac{\left(\sqrt{3}-3\right)\left(\sqrt{3}-1\right)}{2}=\dfrac{3-\sqrt{3}-3\sqrt{3}+3}{2}=\dfrac{6-4\sqrt{3}}{2}=3-2\sqrt{3}\)
\(x-114=113\\ x=113+114\\ x=227\)
\(3^2-3x=6^6.6^5\\ 9-3x=6^1=9-3x=6\\ 3x=9-6\\ 3x=3\\ x=1\)
\(\left\{{}\begin{matrix}\dfrac{9}{\sqrt{2x-1}}+\dfrac{3}{y+1}=2\\\dfrac{4}{\sqrt{2x-1}}-\dfrac{1}{y+1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{9}{\sqrt{2x-1}}+\dfrac{3}{y+1}=2\left(1\right)\\\dfrac{12}{\sqrt{2x-1}}-\dfrac{3}{y+1}=3\left(2\right)\end{matrix}\right.\)
Lấy \(\left(2\right)+\left(1\right)\) ta được:
\(\dfrac{21}{\sqrt{2x-1}}=5\\ \Leftrightarrow5\sqrt{2x-1}=21\\ \Leftrightarrow25\left(2x-1\right)=441\\ \Leftrightarrow50x-25=441\\ \Leftrightarrow50x=466\Leftrightarrow x=\dfrac{233}{25}\)
Thay x vào (1)
\(\dfrac{9}{\sqrt{2\cdot\dfrac{233}{25}-1}}+\dfrac{3}{y+1}=2\\ \Leftrightarrow\dfrac{9}{\sqrt{\dfrac{441}{25}}}+\dfrac{3}{y+1}=2\\ \Leftrightarrow\dfrac{9}{\dfrac{21}{5}}+\dfrac{3}{y+1}=2\\ \Leftrightarrow\dfrac{15}{7}+\dfrac{3}{y+1}=2\\ \Leftrightarrow15\left(y+1\right)+21=14\left(y+1\right)\\ \Leftrightarrow15y+15+21=14y+14\\ \Leftrightarrow y=-22\)
Vậy pt có tập nghiệm \(\left(x;y\right)=\left(\dfrac{233}{25};-22\right)\)
\(\left\{{}\begin{matrix}\dfrac{9}{\sqrt{2x-1}}+\dfrac{3}{y+1}=2\\\dfrac{4}{\sqrt{2x-1}}-\dfrac{1}{y+1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{36}{\sqrt{2x-1}}+\dfrac{12}{y+1}=8\\\dfrac{36}{\sqrt{2x-1}}-\dfrac{9}{y+1}=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{21}{y+1}=-1\\\dfrac{4}{\sqrt{2x-1}}-\dfrac{1}{y+1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y+1=-21\\\dfrac{4}{\sqrt{2x-1}}=\dfrac{20}{21}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-22\\2x-1=\dfrac{441}{25}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{233}{25}\\y=-22\end{matrix}\right.\)
a) Có 15 học sinh đến trường bằng xe đạp.
b) Lớp 6A có 42 học sinh.
a Có 15 học sinh đến trường bằng xe đạp
b Lớp 6A có 42 học sinh
d 40%
3:
Gọi độ dài CD là x
Vận tốc người 1 là x/2
Vận tốc người 2 là x/3
Theo đề, ta có: 2/3(x/2-x/3)=20
=>x/2-x/3=30
=>x/6=30
=>x=180
a/
Xét tg vuông AKD và tg vuông MKB có chung \(\widehat{MKB}\)
=> tg AKD đồng dạng với tg MKB \(\Rightarrow\frac{KA}{KM}=\frac{KD}{KB}\Rightarrow KA.KB=KD.KM\)
b/
Ta có
\(MH\perp AC;AB\perp AC\)=> MH//AB
MB=MC
=> MH là đường trung bình của tg ABC \(\Rightarrow MH=\frac{AB}{2}\)
Xét tg vuông MCD có
\(MH^2=HC.HD\)(Trong tg vuông bình phương đường cao từ đỉnh góc vuông bằng tích hai hình chiếu của 2 cạnh bên trên cạnh huyền)
\(\Rightarrow\left(\frac{AB}{2}\right)^2=HC.HD\Rightarrow AB^2=4.HC.HD\)