K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2017

\(\frac{2n+15}{n+1}=\frac{2n+2+13}{n+1}=\frac{2\left(n+1\right)+13}{n+1}=\frac{2\left(n+1\right)}{n+1}+\frac{13}{n+1}=2+\frac{13}{n+1}\)

Để \(\frac{2n+15}{n+1}\in Z\) <=> \(n+1\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)

n + 1 1 -1 13 -13
n 0 -2 12 -14

Vậy để \(\frac{2n+15}{n+1}\in Z\) thì n = {0;-2;12;-14}

12 tháng 2 2017

\(\frac{2n+15}{n+1}\in Z\Leftrightarrow2n+15⋮n+1\Leftrightarrow2n+2+13⋮n+1\Leftrightarrow2\left(n+1\right)+13⋮n+1\)\(\Leftrightarrow13⋮n+1\) \(\left(vì2\left(n+1\right)⋮n+1\right)\)

\(\Leftrightarrow n+1\inƯ\left(13\right)\Leftrightarrow n+1\in\left\{\pm1;\pm13\right\}\Leftrightarrow n\in\left\{0;-2;12;-14\right\}\)

Vậy\(n\in\left\{0;-2;12;-14\right\}\)

13 tháng 8 2017

Ta có : \(A=\frac{2n-7}{n-7}=\frac{2n-14+7}{n-7}=\frac{2\left(n-7\right)+7}{n-7}=\frac{2\left(n-7\right)}{n-7}+\frac{7}{n-7}=2+\frac{7}{n-7}\)

a) Để A là số nguyên  \(\Rightarrow2+\frac{7}{n-7}\in Z\) . Vì 2 thuộc Z  nên \(\frac{7}{n-7}\in Z\)

\(\Rightarrow7⋮\left(n-7\right)\Rightarrow n-7\inƯ\left(7\right)=\left\{-7;-11;7\right\}\)

\(\Rightarrow n\in\left\{-7+7;-1+7;1+7;7+7\right\}\)

\(\Rightarrow n\in\left\{0;6;8;14\right\}\)

b) nếu n là số lớn nhất nên n = 14

Thay n = 14 vào \(A=\frac{2n-7}{n-7}\Rightarrow A=\frac{2.14-7}{14-7}=\frac{21}{7}=3\)

Vì câu b mik không rõ đề lắm.

k mik nhé

13 tháng 8 2017

Câu b chịu khó suy luận tí nha. Cũng phân tích ra 2 + 7/(n+7). Rõ ràng để A là số nguyên lớn nhất thì 7/(n+7) phải là số nguyên lớn nhất. Mà phân thức này tử không đổi nên muốn đạt giá trị lớn nhất thì mẫu phải đạt số nguyên dương nhỏ nhất (là bằng 1).

Nên đáp số  n=8

8 tháng 5 2020

Đặt A là tập hợp giá trị của n trong \(\frac{-12}{n}\)

\(\frac{-12}{n}\)là số nguyên => \(n\inƯ\left(-12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

=> \(A=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

Đặt B là tập hợp giá trị của n trong \(\frac{15}{n-2}\)

\(\frac{15}{n-2}\)là số nguyên => \(n-2\inƯ\left(15\right)=\left\{\pm1;\pm3;\pm5;\pm15\right\}\)

=> \(n\in\left\{3;1;5;-1;7;-3;17;-13\right\}\)

=> \(B=\left\{3;1;5;-1;7;-3;17;-13\right\}\)

Đặt C là tập hợp giá trị của n trong \(\frac{8}{n+1}\)

\(\frac{8}{n+1}\)là số nguyên => \(n+1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

=> \(n\in\left\{0;-2;1;-3;3;-5;7;-9\right\}\)

=> A \cap\capC = -3 ; 3 

=> n = -3 hoặc n = 3 thì ba phân số đều có giá trị nguyên 

8 tháng 5 2020

A giao B giao C nhé ... Copy ký hiệu nó k hiện

14 tháng 11 2015

2n-1 chia hết cho n-2

=> 2n-4+3 chia hết cho n-2

Vì 2n-4 chia hết cho n-2

=> 3 chia hết cho n-2

=> n-2 thuộc Ư(3)

=> n-2 thuộc {1; 3; -1; -3}

=> n thuộc {3; 5; 1; -1}

18 tháng 4 2021

a, Gọi ƯCLN 2n + 5 ; n + 3 = d \(\left(d\inℕ^∗\right)\)

Ta có : \(2n+5⋮d\)(1) 

\(n+3⋮d\Rightarrow2n+6⋮d\)(2) 

Lấy (2) - (1) ta được : \(2n+6-2n-5⋮d\Rightarrow1⋮d\Rightarrow d=1\)

b, Để  \(B=\frac{2n}{n+3}+\frac{5}{n+3}=\frac{2n+5}{n+3}\)nhận giá trị nguyên khi 

\(2n+5⋮n+3\Leftrightarrow2\left(n+3\right)-1⋮n+3\)

\(\Rightarrow n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)

n + 31-1
n-2-4
30 tháng 4 2017

\(2n-3⋮n+1\)

\(\Rightarrow2n+2-5⋮n+1\)

\(\Rightarrow2\left(n+1\right)-5⋮n+1\)

\(\Rightarrow5⋮n+1\)

\(\Rightarrow n+1\in\left\{1;-1;5;-5\right\}\)

\(\Rightarrow n\in\left\{0;-2;4;-6\right\}\)

Vậy \(n\in\left\{0;-2;4;-6\right\}\)