choS=\(\sqrt{x-3}+\sqrt{y-4}\) và x+y=8 .tìm gt lớn nhất của S
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy 3 số : \(a+b+c\ge3\sqrt[3]{abc}\), ta có :
\(\sqrt[3]{x+3y}=\frac{1}{3}.3.\sqrt[3]{1.1.\left(x+3y\right)}\le\frac{1}{3}\left(1+1+x+3y\right)\)
T.tự : \(\sqrt[3]{y+3z}\le\frac{1}{3}\left(1+1+y+3z\right)\)và \(\sqrt[3]{z+3x}\le\frac{1}{3}\left(1+1+z+3x\right)\)
Suy ra \(P\le\frac{1}{3}\left(1+1+x+3y+1+1+y+3z+1+1+z+3x\right)\)
\(\Leftrightarrow P\le\frac{1}{3}\left[6+4\left(x+y+z\right)\right]=\frac{1}{3}\left(6+4.\frac{3}{4}\right)=3\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{4}\)
Vậy \(Max_P=3\)
áp dụng bđt bunyakovsky cho 2 bộ số (1;1) và (căn x;căn y) ta có: (1^2+1^2)((căn x)^2 +(căn y)^2)>=(1.căn x=1.căn y)^2
<=>2(x+y)>=(căn x+căn y)^2
<=>A=căn x+căn y<=căn(2(x+y))=căn(2.1)=căn 2
đẳng thức xảy ra <=> (căn x)/1=(căn y)/1 và x+y=1<=>x=y=1/2
vậy maxA=căn 2<=>x=y=1/2
\(S=\sqrt{x-3}+\sqrt{y-4}\)
ĐK:\(x\ge 3;y\ge 4\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(S^2=\left(\sqrt{x-3}+\sqrt{y-4}\right)^2\)
\(\le\left(1+1\right)\left(x-3+y-4\right)\)
\(=2\left(x+y-7\right)=2\)
\(\Rightarrow S^2\le2\Rightarrow S\le\sqrt{2}\)
\(A=\sqrt{x-3}+\sqrt{y-4}\)
\(\le\sqrt{\left(1+1\right)\left(x-3+y-4\right)}=\sqrt{2.1}=\sqrt{2}\)
Áp dụng bất đẳng thức AM-GM:
\(yz\sqrt{x-1}=yz\sqrt{\left(x-1\right)1}\le yz\frac{\left(x-1\right)+1}{2}=\frac{xyz}{2}\);
\(zx\sqrt{y-4}=\frac{zx}{2}\sqrt{\left(y-4\right)4}\le\frac{zx}{2}\frac{\left(y-4\right)+4}{2}=\frac{xyz}{4}\);
\(xy\sqrt{z-9}=\frac{xy}{3}\sqrt{\left(z-9\right)9}\le\frac{xy}{3}\frac{\left(z-9\right)+9}{2}=\frac{xyz}{6}\)
\(\Rightarrow\frac{yz\sqrt{x-1}+zx\sqrt{y-4}+xy\sqrt{z-9}}{xyz}\le\frac{\frac{xyz}{2}+\frac{xyz}{4}+\frac{xyz}{6}}{xyz}\)\(=\frac{1}{2}+\frac{1}{4}+\frac{1}{6}=\frac{11}{12}\)
Vậy \(P_{max}=\frac{11}{12}\)
Dấu "=" xảy ra khi \(x=2;y=8;z=18\)
Chắc bạn ghi nhầm căn thức thứ 2
\(A2\sqrt{2}=2\sqrt{\left(2x+4\right)\left(x^2-2x+4\right)}+2\sqrt{\left(2y+4\right)\left(y^2-2y+4\right)}+2\sqrt{\left(2z+4\right)\left(z^2-2z+4\right)}\)
\(A2\sqrt{2}\le2x+4+x^2-2x+4+2y+4+y^2-2y+4+2z+4+z^2-2z+4\)
\(A2\sqrt{2}\le x^2+y^2+z^2+24=72\)
\(A\le18\sqrt{2}\)
Dấu "=" xảy ra khi \(x=y=z=4\)
Gọi \(A=\sqrt{x-3}+\sqrt{y-4}\)
Ta có : \(A^2=x-3+y-4=2\sqrt{\left(x-3\right)\left(y-4\right)}=x+y-7+2\sqrt{2\left(x-3\right)\left(y-4\right)}\)
\(=1+2\sqrt{\left(x-3\right)\left(y-4\right)}\)
Theo AM - GM ta có : \(2\sqrt{\left(x-3\right)\left(y-4\right)}\le x-3+y-4=x+y-7=8-7=1\)
\(\Rightarrow A^2\le1+1=2\Rightarrow A\le\sqrt{2}\)Có GTLN là \(\sqrt{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x-3=y-4\Leftrightarrow\hept{\begin{cases}x-y=-1\\x+y=8\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{7}{2}\\y=\frac{9}{2}\end{cases}}}\)
Đặt \(2\sqrt{x+1}+\sqrt{4-x}=t\Rightarrow t^2-4=3x+4+4\sqrt{-x^2+3x+4}\)
Ta có:
\(2\sqrt{x+1}+\sqrt{4-x}\le\sqrt{\left(4+1\right)\left(x+1+4-x\right)}=5\)
\(\sqrt{x+1}+\sqrt{x+1}+\sqrt{4-x}\ge\sqrt{x+1}+\sqrt{x+1+4-x}\ge\sqrt{5}\)
\(\Rightarrow\sqrt{5}\le t\le5\)
Phương trình trở thành:
\(t^2-4=mt\) \(\Leftrightarrow f\left(t\right)=t^2-mt-4=0\)
\(ac=-4< 0\Rightarrow pt\) luôn có 2 nghiệm trái dấu (nghĩa là đúng 1 nghiệm dương)
Vậy để pt có nghiệm thuộc \(\left[\sqrt{5};5\right]\Rightarrow x_1< \sqrt{5}\le x_2\le5\)
\(\Rightarrow f\left(\sqrt{5}\right).f\left(5\right)\le0\)
\(\Rightarrow\left(1-\sqrt{5}m\right)\left(21-5m\right)\le0\)
\(\Rightarrow\dfrac{\sqrt{5}}{5}\le m\le\dfrac{21}{5}\)
2.
Chắc đề đúng là "tìm m để giá trị nhỏ nhất của hàm số đạt giá trị lớn nhất"
Hàm bậc 2 có \(a=2>0\Rightarrow y_{min}=-\dfrac{\Delta}{4a}=-\dfrac{9\left(m+1\right)^2-8\left(m^2+3m-2\right)}{8}=-\dfrac{m^2-6m+25}{8}\)
\(\Rightarrow y_{min}=-\dfrac{1}{8}\left(m-3\right)^2-2\le-2\)
Dấu "=" xảy ra khi \(m-3=0\Rightarrow m=3\)
Lời giải:
a. $y=\sqrt{x^2+x-2}\geq 0$ (tính chất cbh số học)
Vậy $y_{\min}=0$. Giá trị này đạt tại $x^2+x-2=0\Leftrightarrow x=1$ hoặc $x=-2$
b.
$y^2=6+2\sqrt{(2+x)(4-x)}\geq 6$ do $2\sqrt{(2+x)(4-x)}\geq 0$ theo tính chất căn bậc hai số học
$\Rightarrow y\geq \sqrt{6}$ (do $y$ không âm)
Vậy $y_{\min}=\sqrt{6}$ khi $x=-2$ hoặc $x=4$
$y^2=(\sqrt{2+x}+\sqrt{4-x})^2\leq (2+x+4-x)(1+1)=12$ theo BĐT Bunhiacopxky
$\Rightarrow y\leq \sqrt{12}=2\sqrt{3}$
Vậy $y_{\max}=2\sqrt{3}$ khi $2+x=4-x\Leftrightarrow x=1$
c. ĐKXĐ: $-2\leq x\leq 2$
$y^2=(x+\sqrt{4-x^2})^2\leq (x^2+4-x^2)(1+1)$ theo BĐT Bunhiacopxky
$\Leftrightarrow y^2\leq 8$
$\Leftrightarrow y\leq 2\sqrt{2}$
Vậy $y_{\max}=2\sqrt{2}$ khi $x=\sqrt{2}$
Mặt khác:
$x\geq -2$
$\sqrt{4-x^2}\geq 0$
$\Rightarrow y\geq -2$
Vậy $y_{\min}=-2$ khi $x=-2$