K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a){x-[52+(35-80.3)3-51]50+14}=20

=>x-[25+(243-240)3-51]50+14=20

=>x-[25+33-51]50+14=20

=>x-[25+27-51]50+14=20

=>x-[52-51]50+14=20

=>x-150+14=20

=>x-1+14=20

=>x-1=20-14

=>x-1=6

=>x=6+1

=>x=7

b){x-[52+(35-80.3)3-51]50+14}=20

=>x-[25+(243-240)3-51]50+14=20

=>x-[25+33-51]50+14=20

=>x-[25+27-51]50+14=20

=>x-[52-51]50+14=20

=>x-150+14=20

=>x-1+14=20

=>x-1=20-14

=>x-1=6

=>x=6+1

=>x=7

a: \(x-43=\left(35-x\right)-48\)

=>\(x-43=35-x-48\)

=>\(x-43=-x-13\)

=>\(x+x=-13+43\)

=>2x=30

=>x=30/2=15

b: \(305-x+14=48+\left(x-23\right)\)

=>\(319-x=48+x-23=25+x\)

=>\(x+25=319-x\)

=>\(x+x=319-25\)

=>\(2x=294\)

=>\(x=\dfrac{294}{2}=147\)

c: \(-\left(-x-6+85\right)=\left(x+51\right)-54\)

=>\(-\left(-x+79\right)=x+51-54\)

=>x-79=x-3

=>-79=-3(vô lý)

=>\(x\in\varnothing\)

d: \(-\left(35-x\right)-\left(37-x\right)=33-x\)

=>\(-35+x-37+x=33-x\)

=>2x-72=-x+33

=>\(2x+x=33+72\)

=>3x=105

=>\(x=\dfrac{105}{3}=35\)

2 tháng 10 2021

a) \(\sqrt{\left(2x-3\right)^2}=7\)

\(\Leftrightarrow\left|2x-3\right|=7\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2x=10\\2x=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

b) \(\sqrt{64x+128}-\sqrt{25x+50}+\sqrt{4x+8}=20\left(đk:x\ge-2\right)\)

\(\Leftrightarrow8\sqrt{x+2}-5\sqrt{x+2}+2\sqrt{x+2}=20\)

\(\Leftrightarrow5\sqrt{x+2}=20\)

\(\Leftrightarrow\sqrt{x+2}=4\Leftrightarrow x+2=16\Leftrightarrow x=14\left(tm\right)\)

c) \(\sqrt{x^2-9}-3\sqrt{x-3}=0\left(đk:x\ge3\right)\)

\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\)

\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\\sqrt{x+3}=3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x+3=9\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)

2 tháng 10 2021

a. \(\sqrt{\left(2x-3\right)^2}=7\)

<=> \(\left|2x-3\right|=7\)

<=> \(\left[{}\begin{matrix}2x-3=7\left(x\ge\dfrac{3}{2}\right)\\-2x+3=7\left(x< \dfrac{3}{2}\right)\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}2x=10\\-2x=4\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=5\left(TM\right)\\x=-2\left(TM\right)\end{matrix}\right.\)

b. \(\sqrt{64x+128}-\sqrt{25x+50}+\sqrt{4x+8}=20\)  ĐK: \(x\ge-2\)

<=> \(\sqrt{64\left(x+2\right)}-\sqrt{25\left(x+2\right)}+\sqrt{4\left(x+2\right)}-20=0\)

<=> \(8\sqrt{x+2}-5\sqrt{x+2}+2\sqrt{x+2}-20=0\)

<=> \(\sqrt{x+2}.\left(8-5+2\right)-20=0\)

<=> \(5\sqrt{x+2}=20\)

<=> \(\sqrt{x+2}=4\)

<=> \(\left(\sqrt{x+2}\right)^2=4^2\)

<=> \(\left|x+2\right|=16\)

<=> \(\left[{}\begin{matrix}x+2=16\left(x\ge-2\right)\\x+2=-16\left(x< -2\right)\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=14\left(TM\right)\\x=-18\left(TM\right)\end{matrix}\right.\)

c. \(\sqrt{x^2-9}-3\sqrt{x-3}=0\)             ĐK: \(x\ge3\)

<=> \(\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\)

<=> \(\sqrt{x-3}.\sqrt{x+3}-3\sqrt{x-3}=0\)

<=> \(\left(\sqrt{x+3}-3\right).\sqrt{x-3}=0\)

<=> \(\left[{}\begin{matrix}\sqrt{x+3}-3=0\\\sqrt{x-3}=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=6\\x=3\end{matrix}\right.\)

Bài 1: 

a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)

\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)

\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)

\(\Leftrightarrow-12x^2+14x+13=0\)

\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)

b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)

\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)

hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)

12 tháng 7 2021

ai giúp mik vs

14 tháng 10 2021

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}=\dfrac{-3x-4y+5z+3-12-25}{-3\cdot2-4\cdot4+5\cdot6}=\dfrac{16}{8}=2\)

Do đó: x=5; y=5; z=17

14 tháng 10 2021

\(a,\dfrac{x^3}{8}=\dfrac{y^3}{27}=\dfrac{z^3}{64}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}\)

Áp dụng t/c dtsbn:

\(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}=\dfrac{x^2+2y^2-3z^2}{4+18-48}=\dfrac{-650}{-26}=25\\ \Rightarrow\left\{{}\begin{matrix}x^2=100\\y^2=225\\z^2=400\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\pm10\\y=\pm15\\z=\pm20\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)\) có giá trị là hoán vị của \(\left(\pm10;\pm15;\pm20\right)\)

28 tháng 4 2019

\(\left(\frac{14}{5}x-50\right)\div\frac{2}{3}=51\)

\(\Leftrightarrow\frac{14}{5}x-50=51\times\frac{2}{3}\)

\(\Leftrightarrow\frac{14}{5}x-50=34\)

\(\Leftrightarrow\frac{14}{5}x=34+50\)

\(\Leftrightarrow\frac{14}{5}x=84\)

\(\Leftrightarrow x=84\div\frac{14}{5}\)

\(\Leftrightarrow x=84\times\frac{5}{14}\)

\(\Leftrightarrow x=30\)

28 tháng 4 2019

\(\left(\frac{14}{5}.x-50\right):\frac{2}{3}=51\)

\(\frac{14}{5}.x-50=51.\frac{2}{3}\)

\(\frac{14}{5}.x-50=34\)

\(\frac{14}{5}.x=34+50\)

\(\frac{14}{5}.x=84\)

\(x=84:\frac{14}{5}\)

\(x=30\)

2 tháng 4 2021

\(\dfrac{2}{3}x+\dfrac{1}{3}=\dfrac{1}{5}\\ \dfrac{2}{3}x=\dfrac{1}{5}-\dfrac{1}{3}\\ \dfrac{2}{3}x=\dfrac{-2}{15}\\ x=-\dfrac{2}{15}:\dfrac{2}{3}\\ x=-\dfrac{1}{5}\)   b) \(\dfrac{4}{5}-\dfrac{5}{3}x=-2\\ \dfrac{5}{3}x=\dfrac{4}{5}+2\\ \dfrac{5}{3}x=\dfrac{14}{5}\\ x=\dfrac{14}{5}:\dfrac{5}{3}\\ x=\dfrac{42}{25}\)c) \(\dfrac{1}{5}+\dfrac{5}{3}:x=\dfrac{1}{2}\\ \dfrac{5}{3}:x=\dfrac{1}{2}-\dfrac{1}{5}\\ \dfrac{5}{3}:x=\dfrac{3}{10}\\ x=\dfrac{5}{3}:\dfrac{3}{10}\\ x=\dfrac{50}{9}\)d) \(\dfrac{5}{7}:x-3=-\dfrac{2}{7}\\ \dfrac{5}{7}:x=3-\dfrac{2}{7}\\ \dfrac{5}{7}:x=\dfrac{19}{7}\\ x=\dfrac{5}{7}:\dfrac{19}{7}\\ x=\dfrac{5}{19}\)

2 tháng 4 2021

Mơn