cho a,b là các số tự nhiên thỏa mãn điều kiện a+1/b+b+1/a là số tự nhiên.chứng minh a+b>=
d^2 biết d là ước chung lớn nhất của a,b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3a + b = 114 => b 3 (Vì 114 3 và 3a 3)
(a,b) + [ a,b] = 174 => [ a,b] 3 (Vì b 3=>(a,b) 3) và 1743)
(a,b) 3 => a 3 ; mặt khác có 3a + b = 114=> b=114 – 3 a
Vì b là số tự nhiên nên phải có 3.a < 114 => a 36 và 3 a
Xét a ={ 3; 6; 0; 12; 15; 18; 21; 24; 27; 30; 33; 36} ; với b = 114 – 3 a.
Lập bảng tính ra các giá trị (a,b) và [ a,b] theo thuật toán Euclid
Còn lại cậu tự làm nhé!
Đặt
X
=
a
+
1
b
+
b
+
1
a
=
a
2
+
b
2
+
a
+
b
a
b
Vì X là số tự nhiên =>
a
2
+
b
2
+
a
+
b
⋮
a
b
Vì d=UCLN(a,b) =>
a
⋮
d
và
b
⋮
d
=>
a
b
⋮
d
2
=>
a
2
+
b
2
+
a
+
b
⋮
d
2
Lại vì
a
⋮
d
và
b
⋮
d
=>
a
2
⋮
d
2
và
b
2
⋮
d
2
=>
a
2
+
b
2
⋮
d
2
=>
a
+
b
⋮
d
2
=>
a
+
b
≥
d
2
(đpcm)
Câu hỏi của Nguyễn Tuấn Minh - Toán lớp 7 - Học toán với OnlineMath
Có: a + \(\frac{1}{b}\) + b + \(\frac{1}{a}\) = a + b + \(\frac{a+b}{ab}\)
Để biểu thức trên là số tự nhiên thì \(\frac{a+b}{ab}\) cũng là số tự nhiên
=> \(\left\{\begin{matrix}a+b⋮a\\a+b⋮b\end{matrix}\right.\)<=>\(\left\{\begin{matrix}b⋮a\\a⋮b\end{matrix}\right.\)<=>\(\left\{\begin{matrix}a\inƯ\left(b\right)\\a\in B\left(b\right)\end{matrix}\right.\)
<=> a = b
=> ƯCLN(a;b)=a=b=d
Ta có: \(\frac{1}{a}+\frac{1}{b}=\frac{1}{a}+\frac{1}{a}=\frac{2}{a}\) là số tự nhiên
\(\Leftrightarrow2⋮a\Rightarrow a\le2\)
<=> 2a \(\ge\)a2
<=> a + b \(\ge\) d2 (đpcm)