Giải phương trình:
( x+7 )*( 3x-1 )-x^2+49=0
x^2-3x+1/x^2-3/x=-4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a bài 1:(2x+1)(3x-2)=(5x-8)(2x+1)
<=>(2x+1)(3x-2)-(5x-8)(2x+1)=0
<=>(2x+1)(3x-2-5x+8)=0
<=>(2x+1)(6-2x)=0
bước sau tự làm nốt nha !
câu b:gợi ý: tách 4x^2-1thành (2x-1)(2x+1) rồi làm như câu a
Đặng Thị Vân Anh tuy mk k cần nx nhưng dù s cx cảm ơn bn nha :)
cái thứ nhất bạn dùng phương pháp đổi biến,đặt x^2+3x+2=a rùi thay vào và ptdt thành nhân tử thui
còn cái thứ 2 bạn nhân x+1 với x+4;x+2 với x+3 rùi lại dùng phương pháp đổi biến la ra thui
a) \(5x-3=7\)
\(\Leftrightarrow5x=7+3\)
\(\Leftrightarrow5x=10\)
\(\Leftrightarrow x=\dfrac{10}{5}\)
\(\Leftrightarrow x=2\)
Vậy \(S=\left\{2\right\}\)
b) \(\left(x+3\right)\left(x-4\right)=0\)
\(\Leftrightarrow x+3=0\) hoặc \(x-4=0\)
*) \(x+3=0\)
\(x=0-3\)
\(x=-3\)
*) \(x-4=0\)
\(x=0+4\)
\(x=4\)
Vậy \(S=\left\{-3;4\right\}\)
c) \(\left|x^2+2014\right|=1\)
\(\Leftrightarrow x^2+2014=1\) hoặc \(x^2+2014=-1\)
*) \(x^2+2014=1\)
\(\Leftrightarrow x^2=1-2014\)
\(\Leftrightarrow x^2=-2013\) (vô lý)
*) \(x^2+2014=-1\)
\(\Leftrightarrow x^2=-1-2014\)
\(\Leftrightarrow x^2=-2015\) (vô lý)
Vậy \(S=\varnothing\)
d) \(\dfrac{2}{x+1}-\dfrac{1}{x-3}=\dfrac{3x-11}{x^2-2x-3}\) (1)
ĐKXĐ: \(x\ne-1;x\ne3\)
\(\left(1\right)\Leftrightarrow2\left(x-3\right)-\left(x+1\right)=3x-11\)
\(\Leftrightarrow2x-6-x-1=3x-11\)
\(\Leftrightarrow-2x=-11+7\)
\(\Leftrightarrow-2x=-4\)
\(\Leftrightarrow x=2\) (nhận)
Vậy \(S=\left\{2\right\}\)
Nhận thấy x = 0 không phải là nghiệm.
Xét x khác 0.Chia hai vế của pt cho x2 ta được:
\(x^2-3x-6+\frac{3}{x}+\frac{1}{x^2}=0\)
\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)-3\left(x-\frac{1}{x}\right)-6=0\)
Đặt \(x-\frac{1}{x}=a\). PT trở thành:
\(a^2-3a-4=0\Leftrightarrow\left[{}\begin{matrix}a=4\\a=-1\end{matrix}\right.\)
Với a = 4 thì \(x=4+\frac{1}{x}=\frac{4x+1}{x}\Leftrightarrow x^2-4x-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2+\sqrt{5}\\x=2-\sqrt{5}\end{matrix}\right.\) (nghiệm xấu chút nhưng dễ giải lắm ạ)
Với a = -1 thì \(x=\frac{1}{x}-1=\frac{1-x}{x}\Leftrightarrow x^2+x-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1+\sqrt{5}}{2}\\x=\frac{-1-\sqrt{5}}{2}\end{matrix}\right.\) (cái này thì max xấu rồi ;( )
\(x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
b.\(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)
\(ĐK:x\ne\pm2\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+2\right)-5\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{12+\left(x^2-4\right)}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)-5\left(x-2\right)=12+\left(x^2-4\right)\)
\(\Leftrightarrow x^2+3x+2-5x+10=12+x^2-4\)
\(\Leftrightarrow-2x=-4\)
\(\Leftrightarrow x=2\left(ktm\right)\)
Vậy pt vô nghiệm
a)
<=> x (x-2 ) = 0
<=> x =0
x = 2
b)
đkxđ : x khác 2 , x khác -2
<=> \(\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\dfrac{12}{x^2-4}+\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=0\)
<=> \(\dfrac{x^2+3x+2}{....}-\dfrac{5x-10}{....}-\dfrac{12}{...}+\dfrac{x^2-4}{....}=0\)
<=> \(x^2+3x+2-5x+10-12+x^2-4=0\)
<=> \(2x^2-2x-4=0\)
<=> x =2 (ktm)
Vậy..
a)
Theo bài ra ta có :
\(\left(x+7\right)\left(3x-1\right)-x^2+49=0\)
\(\Leftrightarrow\left(x+7\right)\left(3x-1\right)-\left(x^2-49\right)=0\)
\(\Leftrightarrow\left(x+7\right)\left(3x-1\right)-\left(\left(x-7\right)\left(x+7\right)\right)=0\)
\(\Leftrightarrow\left(x+7\right)\left(3x-1-x+7\right)=0\)
\(\Leftrightarrow\left(x+7\right)\left(2x+6\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}x+7=0\\2x+6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[\begin{matrix}x=-7\\x=-3\end{matrix}\right.\)
Vậy \(S=\left\{-3;-7\right\}\)
Chúc bạn học tốt =))
a/
<=>(x+7)(3x-1)-(x^2-7^2)=0
<=>(x+7)(3x-1)-(x-7)(x+7)=0
<=>(x+7)(3x-1-x+7)=0
<=>(x+7)(2x+6)=0
<=>x+7=0 hoặc 2x+6=0
<=>x=-7 2x=-6
<=> x=-3
=>S (-7;-3)