K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1.Cho tam giác ABC có trọng tâm G. Đường thẳng d đi qua G cắt hai cạnh AB và AC. CMR khoảng cách từ A đến d bằng tổng các khoảng cách từ B và C đến d.Bài 2. Cho tam giác ABC cân tại A và đường cao AD. Từ D dựng DE vuông góc AB và DF vuông góc AC (E thuộc AB, F thuộc AC)a) Chứng minh AD là trung trực của đoạn EF.[B]b) [/B]Trên tia đối của tia DE lấy điểm G sao cho DG=DE. Chứng minh tam giác CEG vuông.Bài...
Đọc tiếp

Bài 1.Cho tam giác ABC có trọng tâm G. Đường thẳng d đi qua G cắt hai cạnh AB và AC. CMR khoảng cách từ A đến d bằng tổng các khoảng cách từ B và C đến d.
Bài 2. Cho tam giác ABC cân tại A và đường cao AD. Từ D dựng DE vuông góc AB và DF vuông góc AC (E thuộc AB, F thuộc AC)
a) Chứng minh AD là trung trực của đoạn EF.
[B]b) [/B]Trên tia đối của tia DE lấy điểm G sao cho DG=DE. Chứng minh tam giác CEG vuông.
Bài 3. Cho tam giác ABC, vẽ tam giác vuông cân ABD cân tại B,A và D ở hai nửa mặt phẳng đối nhau bờ là đường thẳng BC. Vẽ tam giác vuông cân CBG cân tại B,G và A ở cùng nửa mặt phẳng bờ là đường thẳng BC. Chứng minh rằng GA vuông góc vớ DC.
Bài 4.Cho tam giác ABC trên tia đối của tia BA, CA lần lượt lấy điểm P,Q sao cho BP=CQ. Gọi M,N lần lượt là trung điểm của các đoạn BC,PQ. Đường thẳng MN cắt đường thẩngB,AC theo thứ tự tại B' và C'. Chứng minh rằng tam giác B'AC cân.

1
22 tháng 2 2020

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

Bài 1 Các câu sau đúng Đ hay sai S 1 Tam giác có 2 góc bằng 45° là tam giác vuông cân.2 Hai tam giác có 2 cặp góc tương ứng bằng nhau thì cặp góc còn lại cũng tương ứng bằngnhau3 Hai tam giác có 2 cặp cạnh tương ứng bằng nhau thì cặp cạnh còn lại cũng tương ứngbăng nhau4 Nếu 1 cạnh góc vuông và 1 góc nhọn của tam giác vuông này bằng 1 cạnh góc vuông vàgóc nhọn của tam giác vuông kia thì 2 tam giác...
Đọc tiếp

Bài 1 Các câu sau đúng Đ hay sai S 1 Tam giác có 2 góc bằng 45° là tam giác vuông cân.2 Hai tam giác có 2 cặp góc tương ứng bằng nhau thì cặp góc còn lại cũng tương ứng bằngnhau3 Hai tam giác có 2 cặp cạnh tương ứng bằng nhau thì cặp cạnh còn lại cũng tương ứngbăng nhau4 Nếu 1 cạnh góc vuông và 1 góc nhọn của tam giác vuông này bằng 1 cạnh góc vuông vàgóc nhọn của tam giác vuông kia thì 2 tam giác vuông đó bằng nhau.5 Tam giác cân có 1 góc bằng 60° là tam giác đều.6 Tạm giác cân có 1 góc bằng 45° là tam giác vuông cân.7 Nếu tam giác có độ dài 3 cạnh lần lượt là 3,4,5 thì tam giác đó là tam giác vuông.8 Hai tam giác đều thì bằng nhau.9 Góc ngoài của tam giác luôn lớn hơn mỗi góc trong của tam giác đó.10 Trong tam giác cân đường phân giác của góc ở đỉnh đồng thời là đường trung trực củacạnh đáy.11 Nếu cạnh huyền của tam giác vuông cân này bằng cạnh huyền của tam giác vuông cânkia thì 2 tam giác đó bằng nhau .12 Tam giác ABC vuông tại A, M là trung điểm của đoạn thắng BC. Nếu AB 2 cm, AC 51 cm thì AM 2 cm.13 Tam giác ABC vuông tại A, M là trung điểm của BC. Nếu 2B 30° và AM 6 cm, thìAC 6cm.14 Nếu 2 tam giác cân có 2 cặp cạnh bên bằng nhau thì 2 tam giác cân đó bằng nhau.15 Nếu cạnh bên và cạnh đáy của tam giác cân này bằng cạnh bên và cạnh đáy của tam giáccân kia thì 2 tam giác cân bằng nhau.16 Nếu 2 tam giác cân có chung góc ở đỉnh thì 2 cạnh đáy của chúng song song với nhau.17 Nếu 2 cạnh và 1 góc của tam giác này lần lượt bằng 2 cạnh và 1 góc của tam giác kia thì2 tam giác đó bằng nhau.18 Nếu 3 tam giác cân AMN , BMN , CMN cùng chung cạnh đáy MN thì 3 điểm A, B, Cthắng hàng.19 Nếu 2 tam giác vuông cân có 1 cặp cạnh góc vuông bằng nhau thì chúng bằng nhau.20 Trong tam giác cân các góc đều có thể là góc nhọn hoặc góc tù.

0
Bài 1: Các câu sau đúng(Đ) hay sai(S):1) Tam giác có 2 góc bằng 45° là tam giác vuông cân.2) Hai tam giác có 2 cặp góc tương ứng bằng nhau thì cặp góc còn lại cũng tương ứng bằngnhau3) Hai tam giác có 2 cặp cạnh tương ứng bằng nhau thì cặp cạnh còn lại cũng tương ứngbăng nhau4) Nếu 1 cạnh góc vuông và 1 góc nhọn của tam giác vuông này bằng 1 cạnh góc vuông vàgóc nhọn của tam giác vuông kia thì 2 tam...
Đọc tiếp

Bài 1: Các câu sau đúng(Đ) hay sai(S):1) Tam giác có 2 góc bằng 45° là tam giác vuông cân.

2) Hai tam giác có 2 cặp góc tương ứng bằng nhau thì cặp góc còn lại cũng tương ứng bằngnhau

3) Hai tam giác có 2 cặp cạnh tương ứng bằng nhau thì cặp cạnh còn lại cũng tương ứngbăng nhau

4) Nếu 1 cạnh góc vuông và 1 góc nhọn của tam giác vuông này bằng 1 cạnh góc vuông vàgóc nhọn của tam giác vuông kia thì 2 tam giác vuông đó bằng nhau.

5) Tam giác cân có 1 góc bằng 60° là tam giác đều.

6) Tạm giác cân có 1 góc bằng 45° là tam giác vuông cân

.7)Nếu tam giác có độ dài 3 cạnh lần lượt là 3,4,5 thì tam giác đó là tam giác vuông.

8) Hai tam giác đều thì bằng nhau

.9) Góc ngoài của tam giác luôn lớn hơn mỗi góc trong của tam giác đó

.10) Trong tam giác cân đường phân giác của góc ở đỉnh đồng thời là đường trung trực củacạnh đáy.

11) Nếu cạnh huyền của tam giác vuông cân này bằng cạnh huyền của tam giác vuông cânkia thì 2 tam giác đó bằng nhau .

12) Tam giác ABC vuông tại A, M là trung điểm của đoạn thắng BC. Nếu AB = 2 cm, AC =51 cm thì AM = 2 cm.

13) Tam giác ABC vuông tại A, M là trung điểm của BC. Nếu 2B= 30° và AM = 6 cm, thìAC = 6cm

.14) Nếu 2 tam giác cân có 2 cặp cạnh bên bằng nhau thì 2 tam giác cân đó bằng nhau.

15) Nếu cạnh bên và cạnh đáy của tam giác cân này bằng cạnh bên và cạnh đáy của tam giáccân kia thì 2 tam giác cân bằng nhau.

16) Nếu 2 tam giác cân có chung góc ở đỉnh thì 2 cạnh đáy của chúng song song với nhau

.17) Nếu 2 cạnh và 1 góc của tam giác này lần lượt bằng 2 cạnh và 1 góc của tam giác kia thì2 tam giác đó bằng nhau.

18) Nếu 3 tam giác cân AMN , BMN , CMN cùng chung cạnh đáy MN thì 3 điểm A, B, Cthắng hàng.

19) Nếu 2 tam giác vuông cân có 1 cặp cạnh góc vuông bằng nhau thì chúng bằng nhau.

20) Trong tam giác cân các góc đều có thể là góc nhọn hoặc góc tù.

3
21 tháng 6 2021
  1. Đ
  2. Đ
  3. S
  4. Đ
  5. Đ
  6. Đ
  7. Đ
  8. S
  9. S
  10. Đ
  11. Đ
  12. S
  13. Đ
  14. S
  15. Đ
  16. Đ
  17. S
  18. Đ
  19. Đ
  20. S
21 tháng 6 2021

1.Đ

2.Đ

3.S

4.Đ

5.Đ

6.S

7.Đ

8.S

9.Đ

10.Đ

11.Đ

12.S

13.S

14.S

15.S

16.Đ

17.S

18.Đ

19.Đ

20.Đ

4 tháng 12 2017

ta biết tam giác đó có 3 cạnh bằng nhau nên nếu nối trung điểm 3 cạnh thì chu vi của hình tam giác sau sẽ bằng 1/2 hình tam giác trước 

256 : x = 4 

x = 256 : 4 

x = 64

mak mỗi lần giảm 2 lần ( 1/2 tương đương với chia 2 ) 

2^6 = 64 nên mất 6 lần để được chu vi còn 4cm 

tính cả lần thứ nhất là tam giác thứu 7 có chu vi 4 cm 

4 tháng 12 2017

cảm ơn

1. cho hình vuông ABCD.Nối điểm chính giữa các cạnh hình vuông thứ nhất ta được hình vuông thứ 2. Cứ tiếp tục như vậy ta đc các hình vuông thứ ba ,thứ tư...Hãy tìm số tam giác trong hình khi vẽ như vậy đến hình vuông thứ 100.2.Một hình lập phương có thể tính 1m3 đc tạo nên từ các khối lập phương nhỏ có thể tích 1m3.Hỏi xếp liên tiếp các khối lập phương nhỏ ấy theo một đường...
Đọc tiếp

1. cho hình vuông ABCD.Nối điểm chính giữa các cạnh hình vuông thứ nhất ta được hình vuông thứ 2. Cứ tiếp tục như vậy ta đc các hình vuông thứ ba ,thứ tư...Hãy tìm số tam giác trong hình khi vẽ như vậy đến hình vuông thứ 100.
2.Một hình lập phương có thể tính 1m3 đc tạo nên từ các khối lập phương nhỏ có thể tích 1m3.Hỏi xếp liên tiếp các khối lập phương nhỏ ấy theo một đường thẳng thì dài bao nhiêu km?
3.cho tam giác ABC.Nối trung điểm của các cạnh tam giác ABC ta đc tam giác thứ hai,cứ tiếp tục như vậy ta đc các tam giác thứ ba,thứ tư....Có tất cả bao nhiêu tam giác trên hình khi vẽ như vậy đến tam giác thứ 50.
4.Hai cạnh góc vuông của một tam giác vuông ABC lần lượt là 3cm và 4cm,hãy tính cạnh còn lại của tam giác vuông này.

0
17 tháng 2 2017

- Nối (1) - (5)

- Nối (2) - (6)

- Nối (3) - (4)

3 tháng 2 2019

- Nối (1) - (5)

- Nối (2) - (6)

- Nối (3) - (4)

11 tháng 4 2021

Chỉ mình vs mình đang cần gấp

Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:1) CF= 2BD2) DM= 1/4 CF   Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N....
Đọc tiếp

Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:
1) CF= 2BD
2) DM= 1/4 CF
   Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. CMR:
1) DM=EN
2) Đường thẳng BC cắt MN tại I là trung điểm của MN
3) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC
    Bài 3: Cho tam giác ABC nhọn. Về phía ngoài của tam vẽ các tam giác vuông cân ABD và ACE đều vuông tại A. Gọi M và N lần lượt là trung điểm của BD và CE, P là trung trung điểm của BC. CMR: Tam giác PMN vuông cân

0