tìm stn B lớn nhất thỏa mãn điều kiện. B > 2011,2011
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử d = (a;b). Khi đó ta có:
Ta có: md+2nd=48 và 3mnd+d=114
md+2nd=48⇒d(m+2n)=48
3mnd+d=114⇒d(3mn+1)=114
Suy ra d∈ƯC(48,114)=(6;3;2;1)
Nếu d = 1, ta có: 3mn+1=114⇒3mn=113
Do 113 không chia hết cho 3 nên trường hợp này ko xảy ra.
Nếu d = 2 ta có: 3mn+1=57⇒3mn=56
Do 56 không chia hết cho 3 nên trường hợp này ko xảy ra.
Nếu d = 3 ta có: 3mn+1=38⇒3mn=37
Do 37 không chia hết cho 3 nên trường hợp này ko xảy ra.
Nếu d = 6 ta có: 3mn+1=19⇒3mn=18⇒mn=6
Và m+2n=8
Suy ra m = 2, n = 3 hoặc m = 6, n = 1
Vậy a = 12, b = 36 hoặc a = 36, b = 6.
Ta thấy số cần tìm ko thể là số có 3 c/s vì 999 + 9 + 9 + 9 <2013
Số cần tìm ko thể là số có 5 c/s vì 10000 + 1 + 0 + 0 + 0 + 0 >2013
=> số cần tìm là số có 4 c/s
Gọi số cần tìm là abcd (a> 0; a, b, c, d<10)
Ta có
abcd + a + b + c + d =2013
a x 1000 + b x 100 + c x 10 + d + a + b + c + d = 2013
a x 1001 + b x 101 + c x 11 + d x 2 = 2013
Ta thấy a x 1001 < 2014 => a < 3; a > 0 => a = 1; 2 mà a lớn nhất => a = 2
Với a = 2 ta có:
2002 + b x 101 + c x 11 + d x 2 = 2013
b x 101 + c x 11 + d x 2 = 11
Nếu b, c > 1 thì b x 101 + c x 11 + d x 2 > 11 => b, c = 0
Với b, c = 0 ta có:
d x 2 = 9 (vô lí)
Vậy không tìm được số tự nhiên nào thỏa mãn đề bài
Mình sửa 3(a,b) thành 3.[a,b] hen
\(a+2b=48\) => a chia hết cho 2; 144 chia hết cho 3, 3[a,b] chia hết cho 3 =>(a,b) chia hết cho 3 => a chia hết cho 3
=> a chia hết cho 2 và 3 mà (2,3)=1 => a chia hết cho 6 mà a<48 => a thuộc {6,12,18,24,30,36}
a | 6 | 12 | 18 | 24 | 30 | 36 | 42 |
b | 21 | 18 | 15 | 12 | 9 | 6 | 3 |
(a,b) | 3 | 6 | 3 | 12 | 3 | 6 | 3 |
[a,b] | 42 | 36 | 90 | 24 | 90 | 36 | 42 |
(a,b) + [a,b] | 129 | 114 | 273 | 84 | 114 | 114 | 129 |
Do n chia hết cho 9; a + 1 chia hết cho 25
=> n - 99 chia hết cho 9; a + 1 - 100 chia hết cho 25
=. n - 99 chia hết cho 9; n - 99 chia hết cho 25
=> \(n-99\in BC\left(9;25\right)\)
Mà (9;25) = 1 và n nhỏ nhất => n - 99 nhỏ nhất => n - 99 = BCNN(9;25) = 9 x 25 = 225
=> n = 225 + 99 = 324
Vậy n = 324
Do n chia hết cho 9; a + 1 chia hết cho 25
=> n - 99 chia hết cho 9; a + 1 - 100 chia hết cho 25
=. n - 99 chia hết cho 9; n - 99 chia hết cho 25
=> $n-99\in BC\left(9;25\right)$n−99∈BC(9;25)
Mà (9;25) = 1 và n nhỏ nhất => n - 99 nhỏ nhất => n - 99 = BCNN(9;25) = 9 x 25 = 225
=> n = 225 + 99 = 324
Vậy n = 324