K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2018

a) (x + 3)(x2 – 3x + 9) – (54 + x3)

= ( x + 3)(x2 – 3.x + 32) – (54 + x3)

= x3 + 33 – (54 + x3)

= x3 + 27 – 54 – x3

= -27

b) (2x + y)(4x2 – 2xy + y2) – (2x – y)(4x2 + 2xy + y2)

= (2x + y)[(2x)2 – 2x.y + y2] – (2x – y)[(2x)2 + 2x.y + y2]

= [(2x)3 + y3] – [(2x)3 – y3]

= (2x)3 + y3 – (2x)3 + y3

= 2y3

29 tháng 3 2018

a) (x + 3)(x2 – 3x + 9) – (54 + x3)

= ( x + 3)(x2 – 3.x + 32) – (54 + x3)

= x3 + 33 – (54 + x3) = x3 + 27 – 54 – x3

= -27

b) (2x + y)(4x2 – 2xy + y2) – (2x – y)(4x2 + 2xy + y2) 

= (2x + y)[(2x)2 – 2x.y + y2] – (2x – y)[(2x)2 + 2x.y + y2]

= [(2x)3 + y3] – [(2x)3 – y3]

= (2x)3 + y3 – (2x)3 + y3

= 2y3 

1: Ta có: \(\left(x+3\right)\left(x^2-3x+9\right)-\left(x^3+54\right)\)

\(=x^3+27-x^3-54\)

=-27

2: Ta có: \(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)

\(=8x^3+y^3-8x^3+y^3\)

\(=2y^3\)

18 tháng 9 2021

\(1,=x^3+270-x^3-54=-27\\ 2,=8x^3+y^3-8x^3+y^3=2y^3\\ 3,=x^3-3x^2+3x-1-x^3-8+3x^2-48=3x-57\\ 4,=x^3-x-x^3-1=-x-1\\ 5,=8x^3-5\left(8x^3+1\right)=-32x^3-5\\ 6,=27+x^3-27=x^3\\ 7,làm.ở.câu.3\\ 8,=x^3-6x^2+12x-8+6x^2-12x+6-x^3-1+3x\\ =3x-3\)

21 tháng 10 2021

a: \(\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)

\(=4x^2-4x+1+4-2\left(4x^2-12x+9\right)\)

\(=4x^2-4x+5-8x^2+24x-18\)

\(=-4x^2+20x-13\)

e: \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)=8x^3+27y^3\)

17 tháng 10 2021

a: Ta có: \(\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)

\(=4x^2-4x+1-2\left(4x^2-12x+9\right)+4\)

\(=4x^2-4x+5-8x^2+24x-18\)

\(=-4x^2+20x-13\)

b: \(\left(3x+2\right)^2+2\left(3x+2\right)\left(1-2y\right)+\left(1-2y\right)^2\)

\(=\left(3x+2+1-2y\right)^2\)

\(=\left(3x-2y+3\right)^2\)

21 tháng 8 2023

a) \(A=\left(x+2\right)\left(x^2-2x+4\right)-x^3+2\)

\(A=x^3+8-x^3+2\)

\(A=10\)

b) \(B=\left(x-1\right)\left(x^2+x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\)

\(B=x^3-1-\left(x^3+1\right)\)

\(B=x^3-1-x^3-1\)

\(B=-2\)

c) \(C=\left(2x-y\right)\left(4x^2+2xy+y^2\right)+\left(y-3x\right)\left(y^2+3xy+9x^2\right)\)

\(C=\left(2x\right)^3-y^3+y^3-\left(3x\right)^3\)

\(C=8x^3-y^3+y^3-27x^3\)

\(C=-19x^3\)

21 tháng 8 2023

a)

\(A=\left(x+2\right)\left(x-2\right)\left(x-2\right)-x^3+2\\ =\left(x^2-4\right)\left(x-2\right)-x^3+2\\ =x^3-2x^2-4x+8-x^3+2\\ =-2x^2-4x+10\)

b)

\(B=x^3-1-\left(x^3+1\right)\\ =x^3-1-x^3-1\\ =-2\)

c)

\(C=\left(2x\right)^3-y^3+\left(y\right)^3-\left(3x\right)^3\\ =8x^3-y^3+y^3-27x^3\\ =-19x^3\)

13 tháng 9 2021

mọi người trả lời giúp mình với mình cần gấp

18 tháng 5 2017

(2x + y)(4x2 – 2xy + y2) – (2x – y)(4x2 + 2xy + y2)

= (2x + y)[(2x)2 – 2x.y + y2] – (2x – y)[(2x)2 + 2x.y + y2]

= [(2x)3 + y3] – [(2x)3 – y3]

= (2x)3 + y3 – (2x)3 + y3

= 2y3

1 tháng 11 2023

 Thực hiện phép tính (10x^5y^2-6x^2y^5+8x^2y^5):(-2x^2y^2)

Trog những HĐT trên chắc là

bn đánh máy thiếu số mũ nhỉ??

Phải ko

23 tháng 9 2019

1.\(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)

\(=\left(2x\right)^3+y^3-\left(2x\right)^3+y^3=2y^3\)

2. \(2\left(2x+1\right)\left(3x-1\right)+\left(2x+1\right)^2+\left(3x-1\right)^2\)

\(=\left(2x+1+3x-1\right)^2=\left(5x\right)^2=25x^2\)

3. \(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)

\(=\left(x-y+z+y-z\right)^2=x^2\)

4. \(\left(x-3\right)\left(x+3\right)-\left(x-3\right)^2\)

\(=\left(x-3\right)\left(x+3-x+3\right)=6\left(x-3\right)\)

5. \(\left(x^2-1\right)\left(x+2\right)-\left(x-2\right)\left(x^2+2x+4\right)\)

\(=x^3+2x^2-x-2-x^3+y^3=2x^2-x-2+y^3\)

6. Áp dụng các hằng đẳng thức đáng nhớ

13 tháng 9 2021

a)A=(2x+3y)(x2-xy+1)-x2(2x-y)-3x tại x=-1;y=2

Rút gọn:

 A = 2x3 - 2x2y + 2x + 3x2y - 3xy2+ 3y - 2x3 + x2y - 3x  (phá ngoặc)

=> A = 2x2y - 3xy- x + 3y

Thay x = -1 và y = 2; ta được:

A = 23

b)B=2xy.(1/4x2-3y)+5y(xy-x3+1) tại x=1;y=1/2

B = x3y/2 - 6xy2 + 5xy2 - 5x3y + 5y (phá ngoặc)

B = -9x3y/10 - xy2 + 5y

Thay x = 1 và y = 1/2 ta được:

B = 0

 

Bài này tuy có hơi cồng kềnh chút nhưng chỉ cần em chịu khó phá ngoặc là sẽ giải quyết được nhé!