(căn 6+ căn 10).Căn(4-căn15)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) đk: \(\hept{\begin{cases}a>0\\a\ne1\end{cases}}\)
Ta có:
\(A=\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}-\frac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\left(\sqrt{a}+\frac{1}{\sqrt{a}}\right)\)
\(A=\frac{\left(\sqrt{a}+1\right)^2-\left(\sqrt{a}-1\right)^2+4\sqrt{a}\left(a-1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\cdot\frac{a+1}{\sqrt{a}}\)
\(A=\frac{4\sqrt{a}+4a\sqrt{a}-4\sqrt{a}}{a-1}\cdot\frac{a+1}{\sqrt{a}}\)
\(A=\frac{4a\left(a+1\right)}{a-1}\)
b) Ta có: \(a=\sqrt{4+\sqrt{15}}\cdot\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
\(=\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4^2-\sqrt{15}^2}\)
\(=\sqrt{10}-\sqrt{6}\)
\(\Rightarrow A=\frac{4\left(\sqrt{10}-\sqrt{6}\right)\left(\sqrt{10}-\sqrt{6}+1\right)}{\sqrt{10}-\sqrt{6}-1}=...\)
\(E=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(=\sqrt{\left(4+\sqrt{15}\right)^2}.\sqrt{\left(\sqrt{10}-\sqrt{6}\right)^2}.\frac{4^2-15}{\sqrt{4+\sqrt{15}}}\)
\(=\sqrt{4+\sqrt{15}}.\sqrt{10+6-2\sqrt{10}.\sqrt{6}}\)
\(=\sqrt{4+\sqrt{15}}.\sqrt{16-2\sqrt{60}}\)
\(=\sqrt{4+\sqrt{15}}.\sqrt{4\left(4-\sqrt{15}\right)}\)
\(=2\sqrt{\left(4+\sqrt{15}\right).\left(4-\sqrt{15}\right)}\)
\(=2\sqrt{16-15}=2\)
Phép tính:
\(2\times\sqrt{15}-2\times\sqrt{10}+\sqrt{6}=1421411372\)
\(2\times\sqrt{15}-2\times\sqrt{10}+\sqrt{3}+\sqrt{6}=5602951922\)
P/s: Em ko biết đúng hay sai đâu mới lớp 4 thôi à
a, \(2\sqrt{5}và3\sqrt{2}\)
giả sử : \(2\sqrt{5}< 3\sqrt{2}\)
\(\Leftrightarrow\sqrt{4.5}< \sqrt{9.2}\)
\(\Leftrightarrow\sqrt{20}< \sqrt{18}\left(luônsai\right)\)( vì 20>18)
=> điều giả sử sai,từ đó suy ra : \(\sqrt{20}>\sqrt{18}hay2\sqrt{5}>3\sqrt{2}\)
b,\(-3\sqrt{6}và-4\sqrt{5}\)
Giả sử : \(-3\sqrt{6}>-4\sqrt{5}\)
\(\Leftrightarrow\sqrt{\left(-3\right)^2.6}>\sqrt{\left(-4\right)^2.5}\)
\(\Leftrightarrow\sqrt{54}>\sqrt{80}\left(luônsai\right)\) ( vì 54<80)
=> điều giả sử sai .Từ đó suy ra : \(\sqrt{54}< \sqrt{80}hay-3\sqrt{6}< -4\sqrt{5}\)
c,\(\sqrt{2}+\sqrt{3}và\sqrt{10}\)
Giả sử : \(\sqrt{2}+\sqrt{3}=\sqrt{10}\)
\(\Leftrightarrow\left(\sqrt{2}+\sqrt{3}\right)^2=\left(\sqrt{10}\right)^2\) ( bình phương hai vế )
\(\Leftrightarrow2+2\sqrt{6}+3=100\)
\(\Leftrightarrow5+2\sqrt{6}=100\)
\(\Leftrightarrow\sqrt{4.6}=100-5\)
\(\Leftrightarrow\sqrt{24}=95\Leftrightarrow\sqrt{24}=\sqrt{95}\) ( luôn sai ) ( vì 24 < 95)
=> điều giả sử sai .Từ đó suy ra : \(\sqrt{24}< \sqrt{95}hay\sqrt{2}+\sqrt{3}< \sqrt{10}\)
**so sánh 2 căn 5 và 3 căn 2
ta có
\(2\sqrt{5}=\sqrt{2^2\cdot5}=\sqrt{20}\) ; (1)
\(3\sqrt{2}=\sqrt{3^2.2}=\sqrt{18}\) (2)
từ (1) và(2) ta có \(\sqrt{20}>\sqrt{18}\Leftrightarrow2\sqrt{5}>3\sqrt{2}\)
**so sánh -3 căn 6 và -4 căn 5
ta có
\(-3\sqrt{6}=-\sqrt{3^2.6}=-\sqrt{54}\) ; (3)
\(-4\sqrt{5}=-\sqrt{4^2.5}=-\sqrt{80}\) (4)
từ (3) và(4) ta có
\(-\sqrt{54}>-\sqrt{80}\Leftrightarrow-3\sqrt{6}>-4\sqrt{5}\)
Rút gọn biểu thức
A=Căn ((2 căn 10 + căn 30 - 2 căn 2 - căn 6)/(2 căn 10 - 2 căn 2)) ÷ 2/ ( căn 3 -1)
6: \(=3\cdot2\sqrt{3}-4\cdot3\sqrt{3}+5\cdot4\sqrt{3}=14\sqrt{3}\)
7: \(=2\sqrt{3}+5\sqrt{3}-4\sqrt{3}=3\sqrt{3}\)
8: \(=2\cdot4\sqrt{2}+4\cdot2\sqrt{2}-5\cdot3\sqrt{2}=\sqrt{2}\)
9: \(=3\cdot2\sqrt{5}-2\cdot3\sqrt{5}+4\sqrt{5}=4\sqrt{5}\)
10: \(=2\cdot2\sqrt{6}-2\cdot3\sqrt{6}+3\sqrt{6}-5\sqrt{6}=-4\sqrt{6}\)
(căn 6 + căn 10) . Căn(4 - căn15)
= 2
Đáp án :
\(=\left(\sqrt{10}+\sqrt{10}\right)\sqrt{4-\sqrt{15}}\)
\(=2\)