K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2021

Bài 1 : bạn check lại hộ mình nhé 

\(\hept{\begin{cases}\frac{6}{x-2y}+\frac{2}{x+2y}=3\\\frac{3}{x-2y}+\frac{4}{x+2y}=-1\end{cases}}\)ĐK : \(x\ne\pm2y\)

\(\Leftrightarrow\hept{\begin{cases}\frac{6}{x-2y}+\frac{2}{x+2y}=3\\\frac{6}{x-2y}+\frac{8}{x+2y}=-2\end{cases}}\)Lấy (1) - (2) ta được : 

\(\Leftrightarrow\hept{\begin{cases}-\frac{6}{x+2y}=5\\\frac{6}{x-2y}+\frac{2}{x+2y}=3\end{cases}\Leftrightarrow\hept{\begin{cases}x+2y=-\frac{6}{5}\\\frac{6}{x-2y}+\frac{2}{x+2y}=3\end{cases}}}\)

Thay vào (1) ta được : \(\frac{6}{x-2y}+\frac{2}{-\frac{6}{5}}=3\Leftrightarrow\frac{6}{x-2y}-\frac{5}{3}=3\Leftrightarrow\frac{6}{x-2y}=\frac{14}{3}\Leftrightarrow x-2y=\frac{18}{14}=\frac{9}{7}\)

Ta có hệ mới \(\hept{\begin{cases}x+2y=-\frac{6}{5}\\x-2y=\frac{9}{7}\end{cases}\Leftrightarrow\hept{\begin{cases}4y=-\frac{87}{35}\\x=\frac{9}{7}+2y\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-\frac{87}{140}\\x=\frac{3}{70}\end{cases}}}\)

Vậy hệ phương trình có một nghiệm (x;y)=(3/70;y=-87/140)

11 tháng 8 2021

b, \(\hept{\begin{cases}\frac{6}{x}+\frac{5}{y}=3\\\frac{9}{x}-\frac{10}{y}=1\end{cases}}\)ĐK : \(x;y\ne0\)

Đặt \(\frac{1}{x}=t;\frac{1}{y}=u\)

\(\hept{\begin{cases}6t+5u=3\\9t-10u=1\end{cases}\Leftrightarrow\hept{\begin{cases}18t+15u=9\\18t-20u=2\end{cases}\Leftrightarrow}\hept{\begin{cases}35u=7\\6t+5u=3\end{cases}}\Leftrightarrow\hept{\begin{cases}u=\frac{1}{5}\\t=\frac{1}{3}\end{cases}}}\)

Theo cách đặt \(\frac{1}{x}=\frac{1}{3}\Rightarrow x=3;\frac{1}{y}=\frac{1}{5}\Rightarrow y=5\)

Vậy hệ phương trình có một nghiệm (x;y)=(3;5)

18 tháng 1 2016

khó quá Lê Ngọc Diệp

18 tháng 1 2016

bn có máy tính thì vào eqn rùi vào un.. j đó nhấn 2 rùi giải thui ak, mk mới lớp 6 nhưng mk bít cách giải hệ phương trình 2 ẩn rùi

15 tháng 2 2019

Bài làm

Đùa à?

15 tháng 2 2019

đừng đùa nhau thế chứ bn iu < đúng vậy , người ta nói ko sai: rảnh rỗi sinh nông nỗi mà>

14 tháng 5 2021

em gửi ảnh dưới ạ

 

Lươn vậy bạn

27 tháng 4 2020

\(\hept{\begin{cases}mx-y=2m\left(1\right)\\4x-my=m+6\left(2\right)\end{cases}}\)

Từ (1) ta có: y=mx-2m, thay y vào (2) ta được

\(4x-m\left(mx-2m\right)=m+6\)

\(\Leftrightarrow\left(4-m^2\right)x=-2m^2+m+6\)

\(\Leftrightarrow\left(m^2-4\right)x=\left(2m+3\right)\left(m-2\right)\left(3\right)\)

Nếu \(m^2-4\ne\)0 hay m\(\ne\pm\)2 thì \(x=\frac{2m+3}{m+2}\)

Khi đó: \(y=mx-2m=\frac{2m^2+3m}{m+2}-2m=-\frac{m}{m+2}\)

Hệ có nghiệm duy nhất \(\left(\frac{2m+3}{m+2};\frac{-m}{m+2}\right)\)

Nếu m=2 thì (3) thỏa mãn với mọi x, và khi đó y=mx-2m=2x-4

Hệ vô số nghiệm \(\left(x;2x-4\right)\)với \(x\inℝ\)

Nếu m=-2 thì (3) trở thành 0x=4. Hệ vô nghiệm

29 tháng 3 2020

bài này mình thấy chỉ cần thế này là xong

\(x^2+y^2=1\Leftrightarrow x+y=\sqrt{1}=1\)( có đúng ko nhỉ )

=>\(x+y=0+1=1+0\)

\(=>\left\{x,y\right\}\in\left(0,1\right);\left(1,0\right)\)

29 tháng 3 2020

P/s : làm thử , e ms lớp 8 .

\(\hept{\begin{cases}x^2+y^2=1\\x^2-x=y^2-y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2=1-y^2\\x^2-y^2=x-y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2=1-y^2\\\left(x-y\right)\left(x+y\right)=x-y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2=1-y^2\\x+y=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2=1-y^2\left(1\right)\\x=1-y\left(2\right)\end{cases}}\)

Thay ( 2 ) vào ( 1 ) ta có :

\(\left(1-y\right)^2=1-y^2\)

\(\Leftrightarrow1-2y+y^2=1-y^2\)

\(\Leftrightarrow1+y^2-1+y^2=2y\)

\(\Leftrightarrow2y^2=2y\)

\(\Leftrightarrow2y^2-2y=0\)

\(\Leftrightarrow2y\left(y-1\right)=0\Leftrightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}\)

T/h 1 : y = 0 

=> x = 1 - 0 = 1

T/h 2 : y = 1

=> x = 1 - 1 = 0

Vậy ...................