K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2017

Giả sử 2014 + n2 là số chính phương

=> 2014 + n2 = m2 (m \(\in\) N)

=> m2 - n2 = 2014

=> (m + n)(m - n) = 2014

=> Trong 2 số m và n phải có ít nhất 1 số chẵn (1)

Mặt khác m + n + m - n = 2m

=> 2 số m + n và m - n cùng tính chẵn lẻ (2)

Từ (1) và (2) => m + n và m - n là 2 số chẵn

=> (m + n)(m - n) chia hết cho 4

Mà 2014 không chia hết cho 4

=> Điều giả sử sai

Vậy 2014 + n2 không phải là số chính phương

3 tháng 2 2017

cam on ban nhiuleuleu

20 tháng 1 2016

Số chính phương là 1 bằng bình phương của 1 số nguyên

20 tháng 1 2016

số chính phương là những số viết được dưới dạng bình phương của một số nguyên , tick nha

16 tháng 4 2016

- nếu n = 1 thì Q=1(chọn)

- nếu n=2 thì Q=3(loai)

- nếu n=3 thì Q=9=32(chọn)

- nếu n =4 thì Q= 33(loại)

- nếu n lớn hơn hoặc bằng 5 thì Q=1!+2!+3!+4!+...+n!

                                                Q=33+5!+...+n!

các số kể từ 5! trở đi trong tích đều chứa cặp thừa số 2 và 5 nên mỗi giai thừa có chữ số tận cùng là 0 

 => 33+...0=...3

số chính phương không có tận cùng 3 nên Q không phải số chính phương 

=> a lớn hơn hoặc bằng 5 bị loại

vậy n = 1 hoặc 3

11 tháng 11 2016

Các số chính phương có tận cùng là 9,4,1,6,5

23 tháng 8 2018

Số 144 là số chính phương . Những số có chữ số tận cùng là : 0;1;4;5;6;9

16 tháng 4 2016

a, ko có số n thỏa mãn

b, n^2+2006 là hợp số với n là số nguyên tố lớn hơn 3

16 tháng 4 2016

a)Giả sử n^2 + 2006 = m^2 (m,n la số nguyên) 
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006 
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên) 
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1) 
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2) 
Từ (1) và (2) suy ra a và b đều là số chẵn 
Suy ra a = 2k , b= 2l ( với k,l là số nguyên) 
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006 
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4) 
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.

15 tháng 7 2019

\(A=1+3+....+\left(2n+1\right)=\frac{\left(2n+2\right)\left(n+1\right)}{2}=\left(n+1\right)^2\)

15 tháng 7 2019

A = 1 + 3 + 5 + 7 + ... + 2n + 1

   = \(\left[\left(2n+1-1\right):2+1\right].\left(\frac{2n+1+1}{2}\right)\)

   = \(\left(n+1\right).\left(n+1\right)\)

   = \(\left(n+1\right)^2\)

=> A là số chính phương (đpcm)

b) \(2+4+6+...+2n\)

\(\left[\left(2n-2\right):2+1\right].\frac{2n+2}{2}\)

\(n.\left(n+1\right)\)

\(n^2+n\)

\(\Rightarrow\)B không là số chính phương