So sánh :
a) 202303 và 303202
B)9920 va 999910
c) 111979 va 371320
D) 1010 va 48.505
e)199010 + 19909 và 199110
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(2^{300}=8^{100}\)
\(3^{200}=9^{100}\)
mà 8<9
nên \(2^{300}< 3^{200}\)
b: \(3^{500}=243^{100}\)
\(7^{300}=343^{100}\)
mà 243<243
nên \(3^{500}< 7^{300}\)
Gọi 199010+19909 là A
Gọi 199110 là B
A=199010+19909=19909(1990+1)=19909.1991
B=199110=19919.1991
Vậy A<B
a) \(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}>8^{100}\)
\(\Rightarrow2^{300}< 3^{200}\)
b) \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\Rightarrow99^{20}< 9999^{10}\)
c) \(3^{500}=\left(3^5\right)^{100}=243^{100}\)
\(7^{300}=\left(7^3\right)^{100}=343^{100}>243^{100}\)
\(\Rightarrow3^{500}< 7^{300}\)
\(A=\dfrac{1011-1}{1012-1}=\dfrac{1010}{1011}\)
\(B=\dfrac{1010+1}{1011+1}=\dfrac{1011}{1012}\)
Ta có :
\(1-A=1-\dfrac{1010}{1011}=\dfrac{1}{1011}\)
\(1-B=1-\dfrac{1011}{1012}=\dfrac{1}{1012}\)
NHận thấy \(\dfrac{1}{1011}>\dfrac{1}{1012}\Rightarrow A< B\)
Ta có:
\(A=\dfrac{1011-1}{1012-1}=\dfrac{1010}{1011}\)
\(B=\dfrac{1010+1}{1011+1}=\dfrac{1011}{1012}\)
Ta lại có:
\(1-\dfrac{1010}{1011}=\dfrac{1}{1011}\)
\(1-\dfrac{1011}{1012}=\dfrac{1}{1012}\)
Vì \(\dfrac{1}{1011}>\dfrac{1}{1012}\Rightarrow\dfrac{1010}{1011}< \dfrac{1011}{1012}\Rightarrow A< B\)
a)Ta có:1-2011/2014=3/2014
1-3012/3015=3/3015
Vì 3/2014>3/3015 nên 2011/2014<3012/3015
Ai phúp tui làm -49 phần 211 và 13 phần 1999
Và bài 311 phần 256 và 199 và 203
26 phần 27 và 96 phần 97
Ta có : \(11^{1979}< 11^{1980}=\left(11^3\right)^{660}=1331^{660}\)
\(37^{1320}=\left(37^2\right)^{660}=1329^{660}\)
Vì \(1329^{660}>1331^{660}\) nên \(11^{1979}< 37^{1320}\)
Bài của bạn bị nhầm chỗ này nhé: 1329660 < 1331660
Lời giải:
a) $A-B=99.10^k-10^{k+2}-10^k=99.10^k-100.10^k-10^k$
$=10^k(99-100-1)=-2.10^k< 0$
$\Rightarrow A<b$
b) $99^{20}-9999^{10}=99^{20}-(99.101)^{10}$
$<99^{20}-(99.99)^{10}=99^{20}-99^{20}=0$
$\Rightarrow 99^{20}<9999^{10}$