Cho A=1+2+22+23+...+233. Hỏi A có phải là số chính phương không???
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
13 + 23 = 1 + 8 = 9 = 32 (là một số chính phương)
13 + 23 + 33 = 1 + 8 + 27 = 36 = 62 (là một số chính phương)
13 + 23 + 33 + 43 = 1 + 8 + 27 + 64 = 100 = 102 (là số cp)
13 + 23 + 33 + 43 + 53 = 1 + 8 + 27 + 64 + 125 = 225 = (15)2 là số cp
Bài 2:
1262 + 1 = \(\overline{..6}\) + 1 = \(\overline{...7}\) (không phải số chính phương)
100! + 8 = \(\overline{...0}\) + 8 = \(\overline{...8}\) (không phải là số chính phương)
1012 - 3 \(\overline{..01}\) - 3 = \(\overline{...8}\) (không phải là số chính phương)
107 + 7 = \(\overline{..0}\) + 7 = \(\overline{..7}\) (không phải là số chính phương)
11 + 112 + 113 = \(\overline{..1}\)+ \(\overline{..1}\)+ \(\overline{..1}\) = \(\overline{...3}\) (không phải số chính phương)
Đặt a = 11....11 (25 chữ số 1)
=> A = a.1025 + a
B = 2.a
=> A - B = a.1025 + a -2a = a.1025 - a = a.(1025-1) = a.9999....99 (25 chữ số 9)
= a2.9 = (a.3)2 = (33333....333)2 (25 chữ số 3)
=> 2A =2 + 22 + 23 + ... + 22020
=> 2A-A =( 2 + 22 + 23 + ... + 22020)- (1 + 2 + 22 + 23 + ... + 22019)
=> A =22020-1
=> A+1 =22020
Vậy A + 1 là một số chính phương
ta chứng minh \(A=n^2\)
thật vậy
với n=1 , thì \(A=1=1^2\) đúng
ta giả sử đẳng thức đúng tới k ,tức là :
\(1+3+5+..+2k-1=k^2\)
Xét \(1+3+5+..+2k-1+2k+1=k^2+2k+1=\left(k+1\right)^2\)
vậy đẳng thức đúng với k+1
theo nguyên lí quy nạp ta có điều phải chứng minh hay A là số chính phương
Không Vì A chia hết cho 5 hiển nhiên
nhưng A chia cho 25 dư 5=> không thể là số Cp
Số chia hết cho 5 nhưng không chia hết cho 25 ( 5^2) thì không phải là số chính phương . Vậy A là số chính phương khi A chia hết cho 5^2 tức là các số hạng của A đều chia hết cho 5^2 . Bạn phải hiểu nhé !
Ta có : 5^2 chia hết cho 5^2 , 5^3 chia hết cho 5^2 ,...5^101 chia hết cho 5^2
mà 5 không chia hết cho 5^2 nên A không phải là số chính phương
Vậy A không phải là số chính phương
a) 1 5 + 2 3 = 9 = 3 2 là số chính phương.
b) 2 5 + 5 2 = 57 không là số chính phương.
Giải :
a) 15 + 23 = 1 8 = 9 = 32 ( là số chính phương )
b) 25 + 52 = 32 + 25 = 57 ( không là số chính phương )
nếu \(A⋮b\) mà \(A⋮̸b^2\)\((A\) là số nguyên tố\()\)
\(\Rightarrow A\) không là số chính phương
tương tự vì A \(⋮5\) mà \(A⋮̸25\)
vây A ko phải là số chính phương