Tìm giá trị nhỏ nhất
\(\frac{-4}{\left|x+7\right|+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
kho..................lam............................tich,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,minh..........................troi........................ret............................wa.................ung ho minh.................hu....................hu..............hu................hat..............hat....................s
Ta có:
\(\left|x-\frac{3}{4}\right|+\left|x+\frac{9}{7}\right|=\left|\frac{3}{4}-x\right|+\left|x+\frac{9}{7}\right|\ge\left|\frac{3}{4}-x+x+\frac{9}{7}\right|=\frac{57}{28}\)
=> \(28\cdot\left(\left|x-\frac{3}{4}\right|+\left|x+\frac{9}{7}\right|\right)\ge57\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(\frac{3}{4}-x\right)\left(x+\frac{9}{7}\right)\ge0\Rightarrow-\frac{9}{7}\le x\le\frac{3}{4}\)
Vậy \(Min=28\Leftrightarrow-\frac{9}{7}\le x\le\frac{3}{4}\)
a
\(ĐKXĐ:x\in R\)
\(A=\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4+\frac{1-x^4}{1+x^2}\right)\)
\(A=\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4-x^2+1\right)\)
\(=\frac{\left(x^2-1\right)\left(x^4-x^2+1\right)}{x^4-x^2+1}-\frac{x^4-x^2+1}{x^2+1}\)
\(=x^2-1-\frac{x^4-x^2+1}{x^2+1}\)
\(=-1+\frac{x^4+x^2-x^4+x^2+1}{x^2+1}\)
\(=\frac{2x^2+1}{x^2+1}-1=\frac{2x^2+1-x^2-1}{x^2+1}=\frac{x^2}{x^2+1}\)
b
Xét \(x>0\Rightarrow M>0\)
Xét \(x=0\Rightarrow M=0\)
Xét \(x< 0\Rightarrow M>0\)
Vậy \(M_{min}=0\) tại \(x=0\)
\(\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{3}\right|+\left|x+\dfrac{1}{4}\right|\)
\(=\left|x+\dfrac{1}{2}\right|+\left|-x-\dfrac{1}{4}\right|+\left|x+\dfrac{1}{3}\right|\)
\(\ge\left|x+\dfrac{1}{2}-x-\dfrac{1}{4}\right|+0=\dfrac{1}{4}\)
Dấu = xảy ra khi \(x=-\dfrac{1}{3}\)
|x+7|>=0 với mọi x
=>|x+7|+2>=2 với mọi x
=>4/(|x+7|+2)<=4/2=2 với mọi x
=>-4/(|x+7|+2)>=2 với mọi số thực x
vậy GTNN của biểu thức là 2 khi và chỉ khi x+7=0=>x=-7