Cho \(\left\{\begin{matrix}x\ge0;y\ge0;z\ge0\\x+y+z=1\end{matrix}\right.\)
Chứng minh rằng : \(0\le xy+yz+zx-2xyz\le\frac{7}{27}\)
GIÚP MÌNH NHÉ, MẶC DÙ TẾT NHÉ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\left\{{}\begin{matrix}x^2+x+5< 0\\x^2-6x+1>0\end{matrix}\right.\)
\(\)Ta có
\(x^2+x+5=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{19}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}>0\)
=> Bất phương trình đàu tiên sai, hệ bất phương trình sai
b)
\(\left\{{}\begin{matrix}2x^2+x-6>0\\3x^2-10x+3\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-3\right)\left(x+2\right)>0\\\left(x-3\right)\left(3x-1\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>2\\x< -3\end{matrix}\right.\\\left[{}\begin{matrix}x\le-\dfrac{1}{3}\\x\ge3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{x^2-1}{x}\ge0\Leftrightarrow\dfrac{\left(x-1\right)\left(x+1\right)}{x}\ge0\)
Trường hợp 1:
\(\left\{{}\begin{matrix}\left(x-1\right)\left(x+1\right)\ge0\\x>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\\x>0\end{matrix}\right.\Leftrightarrow x\ge1\)
Trường hợp 2:
\(\left\{{}\begin{matrix}\left(x-1\right)\left(x+1\right)\le0\\x< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le1\\x< 0\end{matrix}\right.\Leftrightarrow-1\le x< 0\)
Vậy hệ có nghiệm \(S=[1;+\infty)\cup [-1;0)\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+m-3\ge0\\2x\ge8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+m-3\ge4+m-3\ge0\\x\ge4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ge-1\\x\ge4\end{matrix}\right.\)
\(x^2-2x< 0\Leftrightarrow0< x< 2\) \(\Rightarrow D_1=\left(0;2\right)\)
Xét \(f\left(x\right)=x^2+2\left(m-1\right)x+m^2\ge0\) (1)
\(\Delta'=\left(m-1\right)^2-m^2=1-2m\)
- Với \(\Delta'\le0\Leftrightarrow m\ge\dfrac{1}{2}\) thì (1) luôn đúng \(\Leftrightarrow\) hệ có nghiệm
- Với \(m< \dfrac{1}{2}\) \(\Rightarrow\) gọi 2 nghiệm của (1) là \(x_1< x_2\) \(\Rightarrow D_2=(-\infty;x_1]\cup[x_2;+\infty)\)
Để hệ vô nghiệm \(\Leftrightarrow D_1\cap D_2=\varnothing\) \(\Leftrightarrow x_1\le0< 2\le x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}f\left(0\right)\le0\\f\left(2\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2\le0\\4+4\left(m-1\right)+m^2\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=0\\m^2+4m\le0\end{matrix}\right.\) \(\Leftrightarrow m=0\)
\(\Rightarrow\) Hệ có nghiệm khi \(m\ne0\)
Vậy
Lời giải:
Nếu $x=-2$ thì HBPT $\Leftrightarrow $m\geq -2$
Nếu $x\neq -2$ thì HBPT \(\Leftrightarrow \left\{\begin{matrix} x+1\geq 0\\ x\leq m\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix} x\geq -1\\ x\leq m\end{matrix}\right.\Leftrightarrow -1\leq x\leq m(*)\).
Giả sử $m>-1$ thì HBPT có vô số nghiệm thực $x$
Giả sử $m< -1$ thì $(*)$ vô lý nên HBPT chỉ có thể nhận nhiều nhất 1 nghiệm $x=-2$
Giả sử $m=-1$ thì $(*)$ có nghiệm $x=-1$. Tổng kết lại HBPT có 2 nghiệm $x=-1$ và $x=-2$
Bài 1 \(\left\{{}\begin{matrix}x^2-3x-4\le0\\\left(m-1\right)x\ge2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le4\\\left(m-1\right)x\ge2\end{matrix}\right.\)
Nếu m = 1, hệ vô nghiệm
Nếu m ≠ 1, hệ tương đương
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\x\le\dfrac{2}{m-1}\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\x\ge\dfrac{2}{m-1}\end{matrix}\right.\end{matrix}\right.\)
Hệ có nghiệm khi một trong hai hệ trong hệ ngoặc vuông có nghiệm ⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\\dfrac{2}{m-1}\ge-1\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\\dfrac{2}{m-1}\le4\end{matrix}\right.\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\-2\le1-m\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\2\le4m-4\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-1\le m< 1\\\dfrac{3}{2}\le m\le4\end{matrix}\right.\)
Lời giải:
Chứng minh \(xy+yz+xz-2xyz\leq \frac{7}{27}\)
Theo BDDT Schur ta có \(xyz\geq (x+y-z)(z+x-y)(y+z-x)=(1-2x)(1-2y)(1-2z)\)
\(\Leftrightarrow 9xyz\geq 4(xy+yz+xz)-1\)
Do đó \(A=xy+yz+xz-xyz\leq xy+yz+xz-\frac{8}{9}(xy+yz+xz)+\frac{2}{9}=\frac{xy+yz+zx}{9}+\frac{2}{9}\)
Theo AM-GM dễ thấy \(1=(xy+yz+xz)^2\geq 3(xy+yz+xz)\Rightarrow xy+yz+xz\leq \frac{1}{3}\)
\(\Rightarrow A\leq \frac{7}{27}\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z=\frac{1}{3}\)
Chứng minh \(xy+yz+xz-2xyz\geq 0\)
Do $x,y,z\geq 0$ nên
\(A=xy(1-z)+yz(1-x)+xz=xy(x+y)+yz(y+z)+xz\geq 0\)
Dấu bẳng xảy ra khi \((x,y,z)=(0,0,1)\) và các hoán vị của nó
Cậu thật giỏi ,cảm ơn nhiều nha .Cho mình xin nick face để cùng nhau học tập nhé Akai Haruma