K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 1 2017

Lời giải:

+) Với \(x>0\) thì \(\text{BPT}\Leftrightarrow \frac{2}{x}\geq 2\Leftrightarrow x\leq 1\)

Nghiệm: \(x\in (0,1]\)

+) Với \(0>x\geq -2\)

\(\text{BPT}\Leftrightarrow \frac{2}{x}\geq 2\Leftrightarrow x\geq 1(\text{vô lý})\)

+) Với \(x<-2\)

\(\text{BPT}\Leftrightarrow \frac{-2x-2}{x}\geq 2\Leftrightarrow -2x-2\leq 2x\Leftrightarrow x\geq \frac{-1}{2}\)( vô lý)

Lưu ý: Khi $x<0$ thì khi nhân lên triệt tiêu mẫu phải đổi dấu

Vậy nghiệm của BPT là \(x\in (0,1]\)

7 tháng 3 2017

\(\left(x+4\right)^2\)nhấn lộn.mn giúp đỡ

NV
13 tháng 4 2020

\(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x^2+\frac{1}{x^2}+2\right)=\left(x+4\right)^2\)

\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2-8\left(x^2+\frac{1}{x^2}\right)=\left(x+2\right)^2\)

\(\Leftrightarrow8\left(x^2+\frac{1}{x^2}+2\right)-8\left(x^2+\frac{1}{x^2}\right)=\left(x+2\right)^2\)

\(\Leftrightarrow\left(x+2\right)^2=16\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-6\end{matrix}\right.\)

NV
3 tháng 4 2019

\(x\ne\pm2\)

Đặt \(\left\{{}\begin{matrix}\frac{x+3}{x-2}=a\\\frac{x-3}{x+2}=b\end{matrix}\right.\) phương trình trở thành:

\(a^2+6b^2=7ab\)

\(\Leftrightarrow a^2-7ab+6b^2=0\)

\(\Leftrightarrow a^2-ab-6ab+6b^2=0\)

\(\Leftrightarrow a\left(a-b\right)-6b\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-6b\right)\left(a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=6b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\frac{x+3}{x-2}=\frac{x-3}{x+2}\\\frac{x+3}{x-2}=\frac{6\left(x-3\right)}{x+2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x+3\right)\left(x+2\right)=\left(x-3\right)\left(x-2\right)\\\left(x+3\right)\left(x+2\right)=6\left(x-3\right)\left(x-2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=-5x\\x^2-7x+6=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=6\end{matrix}\right.\)

30 tháng 3 2020

ĐK: \(x\in R\backslash\left\{-4,-3,-2,-1\right\}\)

PT ban đầu

\(\Leftrightarrow\frac{x+2-x-1}{\left(x+1\right)\left(x+2\right)}+\frac{x+3-x-2}{\left(x+2\right)\left(x+3\right)}+\frac{x+4-x-3}{\left(x+3\right)\left(x+4\right)}+\frac{x+5-x-4}{\left(x+4\right)\left(x+5\right)}=\frac{1}{x+1}-403\\ \Leftrightarrow\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}=\frac{1}{x+1}-403\\ \Leftrightarrow\frac{1}{x+5}=403\\ \Leftrightarrow x+5=\frac{1}{403}\Leftrightarrow x=\frac{-2014}{403}\)

Chúc bạn học tốt nhaok.

30 tháng 3 2020

Sr bạn nha, nhưng điều kiện là \(x\in R\backslash\left\{-5,-4,-3,-2,-1\right\}\). (Xét thiếu :>)

Chúc bạn học tốt nhaok.

NV
14 tháng 4 2019

ĐKXĐ: \(x\ne0\)

Ta có \(\left(x+\frac{1}{x}\right)^2=x^2+\frac{1}{x^2}+2\)

Đặt \(x^2+\frac{1}{x^2}=a\Rightarrow\left(x+\frac{1}{x}\right)^2=a+2\) pt trở thành:

\(8\left(a+2\right)+4a^2-4a\left(a+2\right)=\left(x+4\right)^2\)

\(\Leftrightarrow8a+16+4a^2-4a^2-8a=\left(x+4\right)^2\)

\(\Leftrightarrow\left(x+4\right)^2=16\)

\(\Rightarrow\left[{}\begin{matrix}x+4=4\\x+4=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=-8\end{matrix}\right.\)

19 tháng 1 2019

Cái này bạn đặt x+3/x-2 = a 

x-3/x+2 = b

=> x^2-9/x^2-4 = ab

Ta có : a^2 - 7ab + 6b^2 = 0

<=> a^2 - 6ab - ab + 6b^2 = 0

PT đa thức thành nhân tử là xong :D 

7 tháng 7 2019

ĐKXĐ: x ≠ \(\pm\) 1

Từ phương trình ban đầu suy ra:

\(x^2\left(x+1\right)^2+x^2\left(x-1\right)^2=\frac{10}{9}.\left(x^2-1\right)^2\)

\(x^4+2x^3+x^2+x^4-2x^3+x^2=\frac{10}{9}\left(x^4-2x^2+1\right)\)

\(18\left(x^4+x^2\right)=10\left(x^4-2x^2+1\right)\)

\(4x^4+19x^2-5=0\Leftrightarrow\left(x^2+5\right)\left(4x^2-1\right)=0\)

\(x^2=\frac{1}{4}\Leftrightarrow x=\pm\frac{1}{2}\)( thỏa mãn ĐKXĐ)

Vậy ...

11 tháng 2 2020

\(ĐKXĐ:x\ne-1;x\ne2\)

\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)

\(\Rightarrow\frac{x-2+5x+5}{\left(x+1\right)\left(2-x\right)}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)

\(\Rightarrow x-2+5x+5=15\)

\(\Rightarrow6x+3=15\Leftrightarrow6x=12\Leftrightarrow x=2\)

Vậy x = 2

11 tháng 2 2020

x=2 ko thỏa mãn nên loại

pt vô nghiêmj