Cho hình vuông ABCD có cạnh bằng a. Trên BC là M, trên tia đối của tia DC lấy N sao cho BM=DN. Vẽ AH vuông góc với NM (H thuộc NM), AH cắt DC tại E. Gọi G là giao điểm của MN với AD.
a. Chứng minh tam giác NAM vuông cân và D,H,B thẳng hàng.
b. Tính chu vi tam giác EMC theo a.
c. Gọi I là giao điểm của BD với AM, gọi K là giao điểm của EG với AN. Chứng minh tứ giác AIEK là hình vuông.
Mình sẽ giải ý đầu của câu a à mà bạn tự vẽ hình nha
ý đầu :
Xét \(\Delta\) ABM và \(\Delta\) ADN có:
BM = DN (gt)
góc ABC = góc ADN = 90 độ ( góc ADN kề bù với góc ADE ( E\(\in\)DC)
AB = AD ( ABCD là hình vuông)
=> \(\Delta\) ABM = \(\Delta\) ADN ( c-g-c)
=> AM = AN ( hai cạnh tương ứng )
=> \(\Delta\) NAM cân tại A
Xét \(\Delta\) ANH và \(\Delta\) AMH có:
AM = AN (cmt)
AH cạnh chung
góc AHN = góc AHM = 90 độ
=> \(\Delta\) AHN = \(\Delta\)AHM ( cạnh huyền - cạnh góc vuông)
=> HN = HM ( hai cạnh tương ứng )
Xét \(\Delta\) cân NAM có:
AH vừa là đường cao vừa là đường trung tuyến
=> \(\Delta\) NAM vuông cân tại A.